
www.manaraa.com

ORIGINAL ARTICLE

Engineering requirements for adaptive systems

Mirko Morandini1 • Loris Penserini1 • Anna Perini1 • Alessandro Marchetto1

Received: 15 October 2014 /Accepted: 7 August 2015 / Published online: 27 August 2015

� Springer-Verlag London 2015

Abstract The increasing demand for complex and dis-

tributed software calls for novel software engineering

methods and techniques, to create systems able to auton-

omously adapt to dynamically changing situations. In this

paper, we present a framework for engineering require-

ments for adaptive software systems. The approach, called

Tropos4AS, combines goal-oriented concepts and high-

variability design methods. The Tropos4AS requirements

model can be directly mapped to software prototypes with

an agent-oriented architecture which can be executed for

requirements validation and refinement. We give a com-

prehensive description of the framework, with conceptual

models, modelling guidelines, and supporting tools. The

applicability of the framework to requirements validation

and refinement is illustrated through a case study. Two

controlled experiments with subjects provide an empirical

evaluation of the proposed modelling language, with sta-

tistical evidence of the effectiveness of the modelling

approach for gathering requirements of adaptive systems.

Keywords Requirements engineering � Agent-oriented
software engineering � Adaptive software � BDI agents �
Empirical study

1 Introduction

Today’s software is expected to be able to deal autono-

mously with dynamic and unforeseen changes, meeting

users’ needs and performance qualities, and avoiding fail-

ure. For example, a patient monitoring application for

elderly persons in an assisted living residence is supposed

to ensure the patient having regular meals and medicine

without annoying him, while he moves from one (physical)

context to another, or while he interacts with other people

in unplanned ways.

Adaptive systems are proposed as a solution to realise

such software applications, with the following key features:

(1) they are aware of the objectives they should achieve;

(2) they have a model of the environment, and are able to

monitor it; (3) they are able to recognise when they deviate

from their objectives and avoid failure; and (4) they are

able to explore and select alternative behaviours.

Over the last decade, research agendas in software

engineering were formulated based on an analysis of the

new needs emerging for engineering such complex sys-

tems [20, 22, 56, 57]. Challenges were pointed out,

including: how to deal with missing or uncertain infor-

mation about the operational environment at the time the

system is under design; how to make requirements avail-

able to the system at run-time (as a component of the

system or of the platform on which the system is deployed),

with the purpose of optimising requirements satisfaction

while respecting quality of service, and how to synchronise

the requirements changes with the software architecture.

Focusing on requirements engineering (RE), it turns out

that requirements analysis for adaptive systems is inher-

ently incomplete [12]. Taking into account the variability

in requirements for adaptive systems and the alternative

design solutions resulting thereof, many decisions that are

& Mirko Morandini

mirkofbk@gmail.com

Loris Penserini

elpense@gmail.com

Anna Perini

perini@fbk.eu

Alessandro Marchetto

alex.marchetto@gmail.com

1 FBK Center for Communication and Information

Technology, 38123 Povo, Trento, TN, Italy

123

Requirements Eng (2017) 22:77–103

DOI 10.1007/s00766-015-0236-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-015-0236-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-015-0236-0&domain=pdf

www.manaraa.com

traditionally made at requirements- and design-time need

to be shifted to run-time [22, 72].

In our view to engineer adaptive systems, adopting a

model-based approach, functional and non-functional

requirements need to be analysed upon modelling:

• domain knowledge relevant to detail the goals the

system is expected to satisfy,

• system capabilities as sets of variants that can be

explored and selected at run-time to realise a desired

behaviour in a specific context, and

• knowledge on how the system should act to avoid

failure.

Since in many domains it would be impossible or hard to

collect such knowledge automatically at run-time (e.g.

based on machine learning techniques), the requirements

analyst needs to give ‘‘hints’’ to the system and to ‘‘guide’’

it in properly interpreting contextual information in order

to decide about when to change its behaviour and which

alternative behaviour to select. At run-time, a monitor-

analyse-plan-execute loop [30] can realise the adaptation

by monitoring requirements satisfaction and making

effective changes based on the knowledge modelled at

requirements-time.

We developed a framework for engineering adaptive

systems, called Tropos for Adaptive Systems (Tropos4AS)

that provides analysts with modelling features for

strengthening the requirements analysis on the specific

knowledge and decision criteria needed by an adaptive

system to autonomously adapt to dynamic changes.

We base the framework on three key modelling aspects,

with the aim of capturing the specific requirements

knowledge, and at the same time to reduce the gap between

requirements-time abstractions and a run-time representa-

tion of requirements for adaptation. They are: (1) a goal

model including information on goal types and associated

satisfaction conditions; (2) an environment model repre-

senting those elements surrounding the system in different

situations, and how they can affect the satisfaction of

system goals; and (3) a failure model to support engineers

to indicate unwanted states of affair and to allow them

designing recovery procedures, either to anticipate fore-

seeable failures or to recover from unpredictable failures.

Tropos4AS also includes a mapping to software agents

for prototyping and performing requirements simulation,

thus supporting analysts during requirements validation

and refinement. It thus aims at being useful also for ana-

lysts that are not experts in the modelling of goal-oriented

and agent-based systems.

Different paradigms fit together in the Tropos4AS

framework. First, goal-oriented requirements engineering

approaches which aim at capturing stakeholder goals, with

strategic dependencies for goal achievement, as introduced

by i* [70], and which exploit human-oriented abstractions

such as agents and goals to model them and support their

analysis to motivate software system requirements. Second,

agent-oriented software engineering, which aims at oper-

ationalising (goal-oriented) requirements into an agent-

oriented system design, such as within the software engi-

neering methodology Tropos [9, 49]. Third, goal-directed

software agents [8], providing suitable language constructs

for requirements representation and reasoning at run-time,

enabling the traceability of choices and failures back and

forth between requirements- and run-time.

Our work complements research efforts conducted in the

last ten years, which were also analysed in a recent sys-

tematic literature review [69] in the light of the modelling

paradigms they use, thematic gaps left, as well as maturity

level of the proposed requirements engineering methodolo-

gies. Indeed, goal-oriented modelling has been used in

several approaches for engineering adaptive systems, while

a synchronisation of the requirements to the system archi-

tecture, and an empirical evaluation of the effectiveness of

the proposed modelling approaches, are among the poorly

investigated topics that we aim at addressing in our work.

Contribution and Outline In this paper, we give a

comprehensive description of Tropos4AS, providing con-

ceptual models, a graphical language, and its semantics, to

enable capturing requirements needed for defining and

driving adaptation. We then give an overview on sup-

porting tools and the possibility of requirements simula-

tion. The paper elaborates and extends previous

publications where preliminary fragments of the frame-

work have been presented [41–43], by completing and

detailing the concepts of the modelling language, defining

meta-models and the modelling process and linking the

models with the semantics defined in [44]. The applica-

bility of prototype simulation during requirements valida-

tion and refinement is illustrated through a case study on

engineering the requirements for the controller of a cleaner

robot (called iCleaner from now on). Moreover, we present

a thorough empirical evaluation of the proposed modelling

language for comprehensibility, effectiveness in capturing

requirements, and modelling effort. This is achieved by

running controlled experiments with subjects for evaluat-

ing the use of Tropos4AS for requirements modelling, in

comparison with the Tropos language.

The paper is organised as follows. Section 2 presents the

Tropos4AS modelling language, with concepts, meta-

models and the design process. Section 3 defines goal

model semantics for representing requirements at run-time,

and introduces the supporting modelling and code gener-

ation tools. Section 4 describes how Tropos4AS require-

ments models can be directly mapped to executable code,

thus enabling prototypes simulation. For illustrating how

Tropos4AS can give support for requirements validation

78 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

and refinement, a case study is presented. In Sect. 5, we

detail an empirical study for the evaluation of the Tro-

pos4AS modelling language in comparison with Tropos and

discuss the results. Section 6 presents related work, while

conclusions and future work directions are given in Sect. 7.

2 The Tropos4AS language

The Tropos4AS modelling language has been defined tak-

ing into account the key properties that need to be engi-

neered into an adaptive system. Consider, for instance, the

patient monitoring application (PMA) that needs to be

aware of its own goals, which can be of different types and

expressed at different levels of detail, as for example

‘‘follow medical prescriptions’’ and ‘‘assure the patient

takes medicine before 8PM’’, the former being a state to be

maintained in time (maintain-goal), the latter to be

achieved at a certain time (achieve-goal).

Also, to make the PMA able to prevent failures such as

an inappropriate medicine supply, patient monitoring

functions need to be designed. An excerpt of the Tro-

pos4AS model for the PMA is depicted in Fig. 15 left,

which shows one of the possible monitorable errors,

medicines not taken autonomously. If this error is not

handled, it may bring to a severe system failure, e.g.

medicines not taken. This failure can be prevented by

specifying appropriate capabilities, e.g. call assistant. The

system could need to adapt also autonomously, by using a

novel combination of existing capabilities. For this, it is

necessary to give the system awareness on the goals to

reach, to define the effect of its activities on the environ-

ment and to give the possibility to monitor the environment

for detecting deviation prior to goal failure.

2.1 Concepts and models

The Tropos4AS modelling language borrows concepts from

i* [71] and bases its development process on the agent-

oriented software engineering methodology Tropos, as

defined in [49], focusing on the actors representing the

system-to-be.

It allows modelling requirements by considering how

the system should behave to satisfy its goals. The three

main dimensions included in the model are:

• an extended goal model and corresponding run-time

satisfaction criteria,

• an environment model to represent the key elements in

the context of the system, which affect goal

satisfaction,

• a failure model to assist the requirements engineers in

eliciting undesirable states of affair and possible

recovery procedures either to anticipate foreseeable

failures or to recover from unpredictable ones.

In goal-oriented RE [62, 71], goal models capture the

stakeholder’s objectives and define a system’s high-level

functional and non-functional goals and alternatives. Tro-

pos4AS relies on goal models and the modelling process

defined in the Tropos language [49]. Following the Tropos

goal modelling process, goals are delegated from stake-

holders to the system actor, which can be decomposed to

one or more subsystem actors called Agents. Performing

goal analysis, goals are decomposed (in AND and OR), re-

delegated to other (sub)actors or operationalised by defin-

ing plans.

The corresponding process, depicted in Fig. 5, fits

within the Tropos requirements engineering process

defined in [38]. Each step of extended goal modelling and

failure modelling may be performed iteratively or in par-

allel, though for clarity reasons only high-level iterations

are shown in the figure.

2.2 Extended goal model

Tropos4AS adds details about the dynamics of goal satis-

faction to goal models, a central aspect for enabling the

monitoring of goal satisfaction and the decision-making in

an adaptive system at run-time.

2.2.1 Goal types

Goals denote a state of affairs to be achieved [9]. Tro-

pos4AS captures the dynamics of goal satisfaction, which

can depend on other goals’ (non-)satisfaction or on envi-

ronmental circumstances, which may change also during

the satisfaction process.

Following the unifying framework defined by Riemsdijk

et al. [64], we endow goals with a basic goal life-cycle with

the three states adopted, active and suspended (Fig. 1).

Once the system needs to bring about a goal, the goal is

adopted. An adopted goal can be either active or sus-

pended. The agent needs to take some action if a goal is in

the active state, but currently not satisfied. Upon this

model, we instantiate three types of goals, also adopted in

software agent programming [19], to define the attitude of

an agent towards goal satisfaction.

Goal satisfaction can be necessary either for a period of

time (maintain-goal) or once in a certain situation

(achieve-goal). Furthermore, for practical reasons we

include the possibility to process specific requests without

reaching particular achievement conditions (perform-

goals).

Achieve-goals are characterised by an achievement

condition that specifies when a certain state of affairs is

Requirements Eng (2017) 22:77–103 79

123

www.manaraa.com

reached. Once reached, these goals are dropped from the

set of goals to be pursued by a system (i.e. the active

goals).

Maintain-goals denote the need to maintain a certain

state of affairs for a period of time. Different semantics can

be attributed, such as a reactive or proactive satisfaction of

goals [23].1 Aiming at a practical implementation, Tro-

pos4AS defines formal semantics for reactive maintain-

goals, which call for action at the moment that a mainte-

nance condition is not satisfied (cf. [44, 64]), and are sus-

pended when the target condition is achieved. For instance,

‘‘follow medical prescriptions’’ is a maintain-goal in the

PMA example, while ‘‘take medicines before 8PM’’ is an

achieve-goal.

Perform-goals are satisfied by successfully executing

one of the associated activities (i.e. plans or subgoals).

It is worth to notice that different goal types were also

adopted in the Formal Tropos language [25]. However, the

temporal logic-based semantics were defined for consis-

tency verification applying model-checking techniques and

thus defined semantics that are not suitable for a run-time

application with imperative programming languages.

2.2.2 Goal relationships

To express run-time dependencies between goal instances

in a, possibly parallel, goal satisfaction workflow, Tro-

pos4AS introduces a goal sequence relationship and the

Inhibition relationship. Sequence denotes a sequential order

for the adoption and achievement of two goals. Inhibition

expresses run-time precedence between goals in the fol-

lowing form: if a goal A inhibits a goal B, as long as A is in

an active state, the achievement process of B has to be

suspended. For example, in a cleaner robot, a goal

recharge battery needs to inhibit goals related to cleaning.

2.2.3 Softgoals

Softgoals are used to express user preferences and QoS needs. An

importance value is added to Tropos softgoals, denoting the cur-

rent importance of a softgoal for an actor in a range [0,1].

Changing importance at run-time, a software can adapt to

changing quality needs by satisfying alternatives which were

previously not considered. Change of importance could be manual

(e.g. defining user preferences in a personal agent), or by using

supervised learning approaches [31].

2.3 The environment model

Adaptivity is concerned with how a software system

behaves when both expected and unexpected changes

adopted

(S)
suspended

ContextCondition
AchieveCondition

execute plans

CreationCondition

¬ContextCondition

(A)
active

adopted

(S)
suspended

execute plans

(A)
active

adopted

execute plans

(A)
active

Achieve-Goal

 PreCondition

FailureCondition

Maintain-Goal

CreationCondition

 PreCondition

TargetCondition

¬MaintainCondition

DropCondition

CreationCondition

 PreCondition

FailureCondition

plans executed

Perform-Goal

^

^

^

Fig. 1 State diagrams for the

goal satisfaction process,

adapted for the three basic goal

types achieve-goal (top),

maintain-goal (centre) and

perform-goal (bottom), with

associated conditions

1 Proactive maintain-goals require predictive reasoning mechanisms,

and thus they are not easily representable in procedural agent

languages in general [64], and approaches such as a ‘‘look-ahead with

rollback’’ [28] are deployable only in specific domains.

80 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

occur in its environment. With the environment model, the

dependencies between the agent’s goals (which determine

the agent’s behaviour) and its intentional and non-inten-

tional environment [35] are made explicit.

2.3.1 Intentional actor relationships

For representing dependencies between intentional actors

in goal models, we use Tropos (i*) strategic dependency

modelling. A goal dependency between agents expresses a

delegation of goal achievement or maintenance, a plan

dependency represents a delegation of performing some

activity, while a resource dependency expresses the need

for obtaining data. Following the Tropos process, goals,

plans and resources delegated from a depender actor need

to be reported and detailed in the dependee actor. An

implicit creation condition for delegated goals and plans is

given by the depender’s goal which needs the dependency.

Also, temporal relationships (e.g. precedence) can be

expressed implicitly, by modelling dependencies to

resources that need to be produced before being consumed.

At an actor level, adaptivity can also concern the

selection of agent instances and the selection of agents

within the ones covering a certain role. This type of

adaptivity is not covered by Tropos4AS. For capturing

adaptivity of dependencies at instance-level, an approach

like the one proposed in [40] can be applied.

2.3.2 Non-intentional entity relationships

For relating changed circumstances to appropriate system

behaviours, we define non-intentional entities following the

definition of Artefact [47]. As opposed to actors or agents,

artefacts are (as perceived from an agent’s perspective) entities

without an autonomous, proactive behaviour, used by agents

to sense or act in the environment or to hold data for inter-

change, providing functionalities through usage interfaces,

and properties describing their inspectable internal state.

Figure 2 depicts a fragment of the Tropos4AS meta-

model focusing on the environment. An agent (representing

a stakeholder or the system) is composed of a goal model,

the agent’s knowledge represented by beliefs related to

data sensed by artefacts and the agent’s own state at run-

time, including the goal satisfaction life-cycle and its

achievement state. An artefact in the environment can

either be internal or external to the system, to distinguish

artefacts in the boundary that is currently modelled and

implemented, from external, given ones, whose properties

cannot be influenced. It is important considering that the

environment can also be a medium for sharing information

and mediating coordination among systems [66].

We model the agent’s view on the system environment

by eliciting the artefacts the system affects or is directly

affected by, and by analysing the relationships between the

system’s goals and these artefacts. This is done iteratively

and in parallel with goal conditions modelling, presented

on the following pages. Primary candidates are resources

modelled in Tropos Late Requirements Analysis goal dia-

grams, if they define artefacts used to sense or act in the

world, and the services and interfaces inside and outside

the system boundary, which need to be accessed. If avail-

able, domain models or ontologies can help, either to

identify artefacts or to represent the environment model

itself. For instance, in the case of an ambient assistance

application such as our example PMA installed in a social

residence, the environment is represented by the various

sensors available and the various entities they can track,

including the patient. For the controller of a cleaner robot,

as stylised in Fig. 6, the environment would contain the

battery (internal to the system) and the room with its

obstacles and the dustbin (external).

The environment model is kept simple deliberately, to

focus on the relationships between environmental entities

and the agent. It does not aim to model the whole domain

including relationships between entities, or to detail their

internals. Available modelling languages, from UML class

Fig. 2 Detail of the Tropos4AS

meta-model, focusing on the

relationships of the agent’s

knowledge with the surrounding

environment, represented by

artefacts

Requirements Eng (2017) 22:77–103 81

123

www.manaraa.com

diagrams to domain ontologies, can be used for this pur-

pose, depending on the needs and the extent of a project.

2.3.3 Goal conditions on environmental states

To define the run-time goal satisfaction process in response

to environmental changes, Tropos4AS uses the concept of

condition, a choice supported also by various agent pro-

gramming languages (Fig. 3).

Specific conditions are associated with each goal type,

to define the run-time goal satisfaction process in response

to changes in the agent’s view on the environment, either

guiding state transitions in the goal satisfaction process (i.e.

satisfaction triggers a state change) or guarding them (i.e.

satisfaction is a prerequisite for a state change). Conditions

are boolean expressions evaluated on the state of the own

knowledge, which holds the state of own goals and the own

belief on artefacts in the environment (see Fig. 4), repre-

sented by environmental artefacts. For example, a value

reported by a sensor on the medicine dispenser managed

by our PMA can be related to the achievement of a goal

take medicines before 8PM by a condition such as

num-medicines-taken � num-mandatory-medicines. These

expressions can be defined, depending on the purpose and

the granularity of the model, in natural language, or as an

expression on properties and functionalities delivered by

the artefacts.

Figure 1 illustrates how the state transitions for the three

goal types are guided or guarded by the satisfaction of the

different conditions:

Creation conditions (CC) determine the criteria for

adopting a goal and thus starting the goal satisfaction

process, transiting, depending on the goal type, from the

non-adopted to the suspended or active state.

Preconditions are guarding conditions that have to be

fulfilled to adopt a goal, and are modelled to restrict the

adoption of a goal to a particular context.

Context conditions are used to suspend goal achieve-

ment. They have to be valid during goal achievement. A

goal in suspended state transits to the active state if the

condition is satisfied and vice versa.

Achievement conditions define when an adopted

achieve-goal was satisfied and will thus be dropped.

Note that the name (i.e. the label) of a goal is typically a

(often vague or ambiguous) description of its achieve-

ment condition.

Maintain and target conditions characterise start and end

of the maintain-goal satisfaction process—maintain

conditions activate the process while target conditions

suspend it;

Drop conditions denote a state in which it is no more

necessary or desired to try goal satisfaction (especially

for maintain-goals), typically defining a temporal or

environmental limit.

Fig. 3 View on the Tropos4AS

meta-model showing the goal

model with the extended goal

concept, including goal types

and conditions

82 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

Failure conditions Failure conditions denote states in

which it would be impossible to achieve a goal; the

satisfaction of such conditions thus denotes the failure of

the goal. While failure of a root goal is critical and will

lead to system failure or at best to a system working in a

degraded mode [3], failure of subgoals can be caught at a

parent goal level, e.g. by exploring modelled alternatives.

In the Tropos4AS modelling process (Fig. 5), making

these conditions explicit, new monitoring requirements

may be identified, leading to new or changed environ-

mental artefacts. The environment model needs thus to be

revised in parallel. Also, goal types (maintain, achieve,

perform) may be defined or refined in parallel, in compli-

ance with the meta-model (Fig. 1). The purpose of exten-

ded goal modelling and condition modelling is, however,

not to define goal models formally and completely, but to

capture and specify the requirements and the known

information about what an agent has to observe and con-

sider for goal achievement. This aims at enriching the

agent’s context awareness.

The formal semantics of the expected behaviour

exhibited by the agent for the satisfaction of the three types

of goal in a goal model, along with the different conditions

that determine their life-cycle, are briefly described in

Sect. 3 and detailed in [44].

2.4 The failure model

Variability modelled in a goal tree through OR- and

Means-end decomposition [49] is a source for adaptivity,

but a goal model typically describes scenarios which fol-

low a ‘‘happy path’’, i.e. scenarios defining the default

software behaviour when all works as intended.

Tropos4AS introduces a failure model, to provide a

means for capturing exceptional situations and possible

mitigation activities at requirements-time, to anticipate

failure at run-time. A failure of the software system is

mostly caused by an incompleteness of the requirements,

namely, by circumstances (i.e. inputs) that were not con-

sidered at requirements analysis and design-time. For

example, the physical failure of an indispensable part of a

robot does not imply the failure of the control software, as

long as this failure was anticipated and correctly handled.

The failure model gives a direct and graphical means to the

analyst to elicit possible errors that cause failure and to

analyse the possibilities to recover from these errors.

The following concepts are introduced (Fig. 4) to capture

failures at a requirements level: Goal Failure situations are

states of the world that explicitly capture the inability to satisfy

a goal. Errors are perceivable events (defined in the form of

boolean conditions) that may cause failure. Recovery Activ-

ities provide new capabilities or a new arrangement of known

capabilities to cope with a particular situation, to anticipate

failure, preventing or recovering from an error. The recovery

activities are also represented as (fractions of) goal models. For

example, in the PMA, inappropriate medicine supply is con-

sidered a failure. One of the possible monitorable errors is

medicines not taken autonomously, which would lead to a

preventive recovery activity call assistant (see also Fig. 15).

2.4.1 Failure modelling

In the following, we describe the failure modelling process,

consisting of failure identification, error elicitation, and

recovery activity modelling, and goal model completion

(Fig. 5b).

Fig. 4 The Tropos4AS meta-

model with details on condition

and failure modelling (goal

model simplified)

Requirements Eng (2017) 22:77–103 83

123

www.manaraa.com

Failure identification The requirements engineer

analyses each goal of an agent for the possibility of failures

in the achievement process, i.e. a set of states in which an

agent (with its actual knowledge and with the given

capabilities) is unable to reach a goal. Failures can be

identified by analysing the domain of a goal, the modelled

conditions, and the possible variability in the environment

of the system. Identified failures (e.g. a failure battery

discharged for a goal Battery loaded, see Fig. 6. A brief

description of the failure in natural language is recom-

mended. First candidates for associating a possible failure

are goals with failure conditions or drop conditions, in the

case that the resulting goal failure is not handled at a higher

level (e.g. by available alternatives to achieve a parent

goal). An analysis of failures may be of particular impor-

tance for goals that have yet no alternative, and goals

without a parent goal that could mitigate their failure.

Error elicitation Errors can be discovered following a

top-down process to find causes for a failure, or bottom-up,

by analysing failures happening outside the system

boundary that can affect goal satisfaction. They are defined

in natural language and then related to the failure and the

environmental artefacts concerned for monitoring the par-

ticular system state. For each error identified, it can be

decided to not mitigate it because it involves only a

reduced risk, or because mitigation would be more

expensive or time demanding than human intervention in

the case of system failure. To evaluate risks in detail, a

separate risk analysis (e.g. [2, 11]) can be performed.

Recovery activity modelling Failures predictable by

monitoring can be anticipated by implementing missing

capabilities (e.g. for a cleaning robot, the ability to clean

from a specific type of dirt) or by using a novel combi-

nation of existing capabilities, while failures not pre-

dictable by monitoring can only be mitigated at design-

time, e.g. by making the system more robust, or by giving it

the ability to detect errors that lead to the failure (e.g. by

employing proper sensors), thus making the failure pre-

dictable. Recovery activities define ways for failure miti-

gation, considered already during requirements analysis, or

as alternatives to be chosen at design- or at run-time,

depending on the kind of failure and the possibility to

Fig. 5 Steps of a extended goal

modelling and b failure

modelling, including models in

input and output of each step.

Activities are depicted in

rectangles, while document-

shaped elements represent

artefacts used or produced

84 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

anticipate it. Possible approaches are: (a) to anticipate goal

failure, modelling new alternative capabilities executed in

the specific error state; (b) to anticipate a failure of avail-

able capabilities (or of entire goal trees) by executing the

recovery activity; (c) to try to reduce failure probability

already at design-time, if a failure cannot be prevented, e.g.

by making the hardware more reliable, or by restricting the

operation environment.

Recovery activities are modelled following the standard

Tropos plan modelling process [49], possibly reusing parts

of the existing goal models. This conceptual notation

allows to abstract from the complexity of techniques rela-

ted to error diagnosis, creating intuitive and simple models

that relate errors to recovery activities.

Goal model completion and refinement After modelling

errors and recovery activities, we need to decide whether

they should be kept either as an alternative within the core

part of a goal model as part of the normal workflow of the

system, or whether they cover an exceptional situation and

should thus, according to the principle of separation of

concerns, not be part of the agent’s nominal behaviour

(Activity F4 in Fig. 5). This choice is highly dependent on

the current application domain.

If it is recognised (also e.g. by considering simulation

results) that the potential causes for failure are recurrent

events, or the execution of recovery activities is continuous

or planned in advance, this should lead to the modelling

within the agent’s goal model, in the form of goals to

achieve or maintain. On the other side, for rare events that

bring about a deviation from an agent’s main activities, like

a failure in hardware/software or in intra-agent communi-

cation, it would be preferable to let the recovery activities

in the failure model.

Being external to the goal model, the failure model can

also possibly (depending on the selected implementation

architecture) be updated at run-time with new failures,

errors and recovery activities without interfering with the

normal behaviour. Despite being outside the scope of this

article, employing a learning mechanism that keeps track

of successful application of capabilities would also be

feasible with this approach. This would contribute to the

realisation of a feedback mechanism, where engineers are

informed of changes in the failure model and can consider

them for integration in the subsequent development cycle,

supporting an adaptive architecture as outlined in [53].

Several additional techniques available may be applied

for refining and completing Tropos4AS goal models, bor-

rowing ideas from the fields of obstacle resolution [63] and

risk mitigation.

For identified failures, additionally to recovery activity

modelling, a goal substitution or the definition of alterna-

tive goals, or a weakening (relaxing) of goals [67], can be

explored to mitigate the failure from a requirements point

of view. The modification of the decision criteria for

selecting behaviours, and the iterative improvement of

conditions, contributions and goal relationships needs also

to be considered in the process.

Mitigation can be achieved also by improving the

sensing of the environment, to timely detect the situations

(errors) that lead to the failure (e.g. by employing special

sensors for distance measurement, to notify an imminent

crash). In this case, the failure becomes predictable and

recovery activity modelling can be applied effectively. On

the same side, as far as the system environment is acces-

sible and modifiable, the requirements engineer can also try

to enact changes in the environment to reduce the likeli-

hood of failure.

Finally, also the dependencies to other agents need to be

considered for enacting mitigation activities, either, by

reduction of critical dependency to agents that are exposed

Fig. 6 Graphical representation

of the modelling concepts

introduced, illustrated on the

model of a cleaner robot.

a Extended goal model with

goal types and new goal

relationships; b environment

model with conditions and

artefacts; c failure model with

failures, errors and recovery

activities (which can also

include parts of the original goal

model)

Requirements Eng (2017) 22:77–103 85

123

www.manaraa.com

to failure, e.g. by implementing the needed capabilities

locally, or, on the other side, by delegation of goals or tasks

to other agents, which have proper knowledge and capa-

bilities and can deliver a service with the requested qual-

ities. In general, a detailed analysis of possible failures may

be of particular importance for goals that have yet no

alternative, e.g. goals in an AND-decomposition and, in

particular, root goals, that are, goals directly delegated by

the stakeholders, without any parent goal that could miti-

gate the failure.

2.5 Visual notation

The adopted i*-based visual notation is illustrated in Fig. 6.

Goal types are represented in a small circle at the upper left

corner of a goal, while inhibition and sequence are repre-

sented by arrows labelled «inhibits» or «seq», respectively.

The adopted graphical notation for the environment model

is the UML class diagram, with artefacts represented as

classes characterised by the functionalities they provide (as

methods) and their state variables (as attributes), possibly

grouped in packages, and can be detailed by using asso-

ciation, aggregation and generalisation relations.

Conditions are represented by flag-shaped boxes linked

to a goal and one or more artefacts in the environment.

Failures are represented by ‘‘jagged’’ circles, associated

with the respective goal by a dashed line, while errors are

represented by an ellipse. Recovery activities are modelled

by goals and plans by using the Tropos4AS notation.

The modelling language largely complies with a wider

effort for unifying the visual representation of goal mod-

elling languages [48].

3 Goal model semantics

The concept of goal is a key element to concretise the

influence and correlations between high-level requirements

and system functionalities. By the use of goal types and

their conditions, Tropos4AS allows to define a wide spec-

trum of agent’s behaviours. In this section, we sketch an

equivalent run-time semantics for Tropos4AS goal models

that formally defines the process of goal satisfaction,

hereafter called the goal life-cycle, and is the basis to build

a formal model for the mapping process between require-

ments- and run-time concepts.

Tropos4AS introduces expressive extensions to goals:

goal types and their conditions. Goal types precisely detail

the agent’s life-cycle by defining the run-time behaviour for

achieving a goal. Conditions guide and guard state transi-

tions in this life-cycle. Despite available agent-oriented

programming platforms make large use of goal types and

conditions, huge differences exist in available goal types,

terminology and semantics [19]. These differences were

addressed by a proposal for unification by Riemsdijk

et al. [64]. However, since goal models (i.e. goal hierar-

chies) are not natively available in any of these languages,

using goal types in goal models necessitates a formal defi-

nition of the behaviour intended at the time of modelling.

Different to other approaches where leaf goals fully

define their parent goal [21, 25, 62] (where, e.g. an AND-

decomposed goal is defined as the intersection between its

subgoals’ states), and it is only possible to state conditions

for leaf level goals or tasks, we define also semantics for

higher level goals, and thus the high-level decision-making

process of an agent on the selection of (sub)goals to achieve.

The dynamic behaviour of Tropos4AS failures is defined

by a mapping to goal models. Errors are mapped to

achievement goals with the error condition as creation

condition, while recovery activities are associated with

them with a means-end relationship.

We formally bind the intended dynamic goal model

semantics with a run-time behaviour by the definition of an

operational semantics for goals in a hierarchical goal

model, building upon the unifying semantics for goal types

in [64]. The goal achievement run-time behaviour is

defined through the achievement of its subgoals and the

satisfaction of its achievement conditions.

At run-time, a goal will be at some time instantiated in

the system (i.e. adopted). It can then be for some time in an

active or suspended state, until being dropped because of

success or failure. Several additional states and transitions

have to be defined for goals in a hierarchical model. We

adopt a minimal set as depicted in Fig. 7: suspended (S),

active_deliberation (AD), active_failed (AF) and active_-

succeeded (AS).

We define an abstract architecture to capture a large

pool of possible goal achievement behaviours, and

instantiate it to formalise detailed semantics for achieve-

goals, maintain-goals and perform-goals, in AND- and OR-

decomposition. The instantiation is performed by linking

goal conditions to a set of transition actions (one of AC-

TIVATE, SUSPEND, FAIL, SUCCEED, RETRY, REACTIVATE,

DROPFAILURE, DROPSUCCESS).

The operational semantics are defined by a set of

inference rules that define possible state transitions where

each rule is specified as

L

R
½rule-name�

where R represents a possible state transition of the system

under the set of conditions L. In this manuscript, we limit to

an explanation of the prominent inference rules. An

exhaustive definition for all possible state transitions,

instantiated to various achieve-, maintain- and perform-

goals, can be found in [37, 44].

86 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

The state of an agent is characterised by a tuple hB;Gi,
where B is the set of actual beliefs and G is the actual set of

goals g1. . .gn the agent has to pursue (i.e. the adopted

goals). We define a generic non-leaf goal at run-time as

gðC;E; s;CÞ, where s 2 S is the actual goal state and C is a

set of goals that results from a deliberation activity delib-

erate(g, B) that returns all the applicable subgoals ci. C and

E are sets of tuples used as transition conditions, of the

form hcondition; actioni, where action is one of the tran-

sition actions and condition is evaluated in the agent’s

belief B. A condition c in C is evaluated in B if C 6¼ ; (i.e.

the set of adopted subgoals is not empty), while a condition

c in E is evaluated if C ¼ ;.
Suppose to have a goal g, OR-decomposed into 3

alternative subgoals c1, c2, and c3. According to the general

state transitions defined, illustrated in Fig. 7, a goal gets

adopted and activated by a creation condition. Then, in

state active-deliberate, deliberation takes place: all sub-

goals that are applicable (i.e. they have no violated pre-

condition with the agent’s current belief of the

environment) change to state AU (see Fig. 7). In this state,

the agent will try to adopt one of the subgoals. Once a

subgoal has crossed its own life-cycle states, depending on

subgoal success or failure, one of the rules [OR:subg-

achieve] or [OR:subg-succeed] is applicable:

ci 2 ChB; adoptðG; ciÞi ! hB0;GiB0 � failureðciÞ
hB; gðE;AU;CÞi ! hB0; gðE;AU;C n fcigÞi

½OR : subg-achieve�
ci 2 C hB; adoptðG; ciÞi ! hB0;GiB0 � successðciÞ

hB; gðE;AU;CÞi ! hB0; gðE;AS;C n fcigÞi
½OR : subg-succeed�

The next transition rule defines how to satisfy the main

precondition of these two rules, the transition from

hB; adoptðG; ciÞi to B0, that is, adopting the subgoal ci in
order to start its achievement process, and waiting until ci
is dropped:

adoptðG; ciÞ ! G [fcig hB;G [fcigi ! hB0;Gi
hB; adoptðG; ciÞi ! hB0;Gi

The function adopt(G, g) performs the adoption of a

subgoal, that is, adding the (sub)goal g to the current list of

adopted (and not yet dropped) goals G in order to start its

achievement process. Eventually, this will result in a new

belief B0. This adoption function is currently performed by

considering sequence and inhibition relationships and by

prioritising alternatives by maximising the contribution of

whole goal subtrees to softgoals, weighted by the softgoals’

actual importance at run-time. The new belief B0 is the

result of the application of transitions for the satisfaction of

the goal ci that concludes with some transition rule that

drops ci from G.

Suppose that the first adopted subgoal succeeds. Thus,

the rule [OR:subg-succeed] will be applied and the goal

transits to the state AS. Depending on the instantiated goal

type, now the goal will be directly dropped with success

(transition drop-success) or the goal’s success condition is

evaluated. Once more, depending on the goal type defini-

tion, if the success condition is false, the goal may fail

completely (transiting to AF) or be put back to the state

AU, where another alternative subgoal will be adopted.

The following transition rule defines dropping of a goal in

case of success, linked to a transition condition DROPSUCCESS.

gðE;AS; ;Þ 2 G hc;DropSuccessi 2 EB � c

hB;Gi ! hB [successðgÞ;G n fgðE;AS; ;Þgi ½drop-successE�

The abstract architecture is instantiated by linking its

transitions to the goal conditions of a specific goal type. As

example, we report a simplified part of the formal defini-

tion for an achieve-goal A(s, f) with success and failure

conditions s and f, which is dropped with success when s is

satisfied, dropped with failure when f is satisfied, and

retried, otherwise.

Aðs; f Þ � gðfhs;DropSuccessi; h:s;Retryi; hf; Faili;
hf ;DropFailurei; . . .gÞ

4 Tool support and illustrative case study

A key purpose of the Tropos4AS modelling approach is to

lower the conceptual gap between requirements, design and

implementation concepts. With this objective, for the

implementation we propose to build on a BDI-based

Fig. 7 Meta-model of the life-cycle states of a goal in a goal model, covering the three main goal types

Requirements Eng (2017) 22:77–103 87

123

www.manaraa.com

architecture2 that provides an explicit notion of goals, plans

and goal satisfaction, and thus allows a homogeneous and

coherent mapping between similar concepts available at

requirements- and run-time. A mapping from Tropos4AS

design concepts to structures of a programming language

for BDI agents was defined, with the purpose of automating

code generation, for obtaining executable prototypes that

implement the requirements specification. It targets a rapid

construction of prototypes of the behavioural model of a

system.

4.1 Tool support and prototype generation

The mapping to agent code is supported by the visual

modelling tool TAOM4E.3 An overview of the tool-sup-

ported Tropos4AS process is represented in Fig. 8. The

TAOM4E modeller implements the Tropos4AS meta-model

and provides an editor for extended goal models and

environment models.

From goal models, the code generation tool t2x gener-

ates executable code skeletons for the behavioural level of

an agent. It relies on the Jadex Active Components plat-

form,4 which provides an explicit representation of active

components (agents) and goals at run-time. In Jadex, goal

models are mapped to Jadex goals (defined in XML) along

with plans (Java) building the connection between them at

different levels, with the help of a Tropos4AS-specific

middleware that manages the decomposition logic for

realising the semantics defined. In this way, the goal tree is

resembled, with an execution behaviour according to the

semantics defined. The approach is, however, mostly

technology independent and can be applied similarly to

other agent-based platforms.

An agent’s goal model is coded in Jadex by mapping the

goal decompositions to a Jadex structure composed of

goals and associated plans for building the connection

between goals at different levels in an agent definition file

(ADF), see Fig. 11 for an example. A middleware manages

the decomposition logic following the semantics defined in

the previous section. This choice is motivated by the fact

that Jadex, similar to other existing goal-oriented agent

programming languages, such as Jadex, Jason and 2APL,

do not support goal hierarchies as a native feature.

The goal decomposition graph is stored in the agent’s

belief base, together with all contributions to softgoals and

dependencies to other agents. The resulting software is

aware about its abilities, namely, at run-time it can monitor

and control its behaviour by navigating the modelled goal

graph, to select goals and plans according to the modelled

requirements. Furthermore, code for resolving dependency

links between agents is generated, using FIPA-standard

request protocols. At run-time, agents are able to select

between modelled alternatives (OR-decompositions,

means-end relations, recovery activities), based on the

evaluation of contributions to softgoals, of modelled con-

ditions, and of subgoal failure.

The agent’s view on artefacts in the system environment

is represented as facts in the agent’s belief base and to Java

classes providing an interface to the requested monitoring

functionalities. For example, the battery of a cleaner robot

maps to a Java class instantiated as a fact in the Jadex

belief base, named battery (Fig. 9), and can be accessed

from the ADF as well as from Java classes through an API.

Environment diagrams can be exported to UML class

diagrams for the detailed design. Java code can be gener-

ated from the final UML models with available tools, such

as Omondo EclipseUML or Papyrus. The implemented

goal models are prepared to access them for the evaluation

of modelled conditions.

The different types of conditions, defied in Sect. 2.2, are

mapped to Jadex goal definition, using boolean formulas to

link the goal achievement process to facts in the belief

base, which represent the artefacts in the environment and

are implemented in Java classes containing the methods

that represent the functionalities of the artefacts. Goal

sequence in an AND-decomposition is annotated in the

ADF and implemented the Java plans defining the AND-

goal decomposition logic, whereas the inhibition link, a

concept available also in the Jadex language, can be

directly mapped to an XML tag of the form\inhibits

ref=‘‘goal_to_inhibit’’/[.

Modelled failures are not directly represented in the

agent code. Error conditions and the respective recovery

activities are mapped to independent parts of the goal

model structure within the agent definition. Error

<agent ...>
<beliefs>

<belief name="battery" class="battery">
<fact>new Battery()</fact>

</belief>
<beliefset name="stations" class="LoadingStation">

<fact>new LoadingStation(Position)</fact>
<fact>new LoadingStation(Position2)</fact>

</beliefset>
</beliefs>
...

</agent>

Fig. 8 Excerpt of the belief base in an agent definition file

2 BDI (Belief–Desire–Intention) agents endow a reasoning cycle, are

able to monitor the environment to update their belief, and to

deliberate on the goals to achieve, selecting suitable plans [54].
3 Tool for Agent-Oriented visual Modelling for Eclipse and its plugin

t2x (Tropos4AS to Jadex), developed by the Software Engineering

group at Fondazione Bruno Kessler (FBK), Trento [41, 50], available,

including the extensions, at http://selab.fbk.eu/taom.
4 http://www.activecomponents.org

88 Requirements Eng (2017) 22:77–103

123

http://selab.fbk.eu/taom
http://www.activecomponents.org

www.manaraa.com

conditions are implemented as creation conditions for the

top-goals or plans of the goal models related to their re-

covery activities. In this way we obtain a behaviour such

that, each time a specific error occurs, the goal model of

one of the associated recovery activities is activated.

The tool is conceived for a fast prototyping of the

behavioural model of a system.5 The generated software

agents are executable in Eclipse on the integrated Jadex

platform. The resulting software provides basic adaptation

mechanisms by exploring the modelled alternatives at run-

time, optimising contributions to softgoals and mitigating

modelled failures.

4.2 Prototyping for requirements validation

and refinement: the iCleaner case study

The resulting software agents can be used to simulate the

adaptive behaviour specified in Tropos4AS models, thus

providing support for the validation of the modelled

requirements.

Figure 10 depicts the requirements validation and

refinement process that we instantiated with Tropos4AS to

evaluate its applicability through a case study. Require-

ments modelling and analysis is performed using Tro-

pos4AS. The resulting models are coded as JADEX agents,

and in parallel test cases are derived with the eCat

tool [45], following the goal-oriented testing methodology

described in [46]. The eCat tool includes an automatic

generation of test cases (new environments as well as

dynamic changes in environments during a test) from goal

models and from an ontology of the environment with an

evolutionary, ontology-based algorithm, a framework for

executing the test cases, and evaluation and reporting

functionalities, to monitor the communication among

agents and all events happening in the execution environ-

ment in order to trace the behaviour and to report errors.

During the simulation phase, the resulting test suites are

executed to exercise the software agents and validate their

behaviour. Visual animations of the specification can be

obtained, by taking advantage of the graphical inspection

tools provided by the Jadex platform. The feedback

obtained by analysing the monitoring logs and observing

the execution is then used to improve the requirements

models, iterating the process till the intended objectives are

achieved.

4.2.1 The iCleaner case study

We aim at modelling the requirements for the controller of

a cleaning robot, iCleaner, which has to properly clean the

floor of a room, by performing the following tasks

autonomously:

1. Explore the area for important objects (waste and

obstacles).

2. Collect waste and bring it to the closest bin which is

not full.

3. Maintain the battery charged, by sufficient recharging.

4. Avoid obstacles, by changing course when necessary.

The cleaning robot needs basic adaptivity features to

deal with the dynamic environments where attributes of

Fig. 10 Requirements validation and refinement through prototyping

Fig. 9 Tool-supported Tropos4AS development activities and design artefacts, when going towards a goal-directed agent implementation in

Jadex. Dotted lines complementary capability implementation approach, presented in [49]

5 It has been successfully used in university courses on agent-

oriented modelling and programming at the university of Trento.

Requirements Eng (2017) 22:77–103 89

123

www.manaraa.com

objects may change (e.g. locations of obstacles), or

unknown objects may appear. Adaptivity allows the agent

to keep or improve its performance as well as its robust-

ness. The performance of the agent can be calculated based

on its efficiency (the waste collected in a time slot) and its

power consumption, while the robustness of the iCleaner

is estimated by the number of crashes during a unit of

operation time.

The case study was conducted by four researchers

experienced in goal modelling and agent-oriented pro-

gramming (including two authors).

4.2.2 Modelling and mapping to Jadex agents

with Tropos4AS

The iCleaner has been modelled with Tropos4AS using the

TAOM4E tool, and the obtained models were mapped to a

Jadex agent definition file (ADF) and Java code skeletons,

by the t2x tool. The resulting ADF ([1200 lines of code, 16

goals and 36 plans, including auxiliary ones) contains the

definition of the agent’s belief base, available goals with

their details, references to plans and accepted messages.

The goal model structure, which guides the achievement of

the high-level goals at run-time and alternatives selection,

was implemented through the mapping process described

above in this Section. The Java plans were manually

implemented to realise the interface to the specific cleaner

agent execution and testing environment which was

developed for general agent testing by one of the case study

participants.

The example in Fig. 11 shows a small part of the gen-

erated ADF for the iCleaner and the corresponding

goal model part. The goal Observe_Environment is

decomposed to two subgoals. This decomposition is

annotated in the belief base (upper part of the figure) and

handled by a dedicated plan. Plans (e.g. MoveToTarget)

are handled by the Jadex goal triggering mechanism. Goal

selection in means-end and OR-relationships is done by

evaluation of softgoal contributions and the importance

given to softgoals. For this system, we gave the same

importance to each softgoal.

The interface to the simulation environment and classes

representing the ontological concepts used in this envi-

ronment were automatically generated, by tools provided

with Jadex. Next, the concrete sensing and acting func-

tionalities were implemented in the generated JAVA files.

4.2.3 Test case generation and simulation

We used the automated testing tool eCat [45] for testing

the system for the achievement of its main goals, obtaining

feedback to improve the design and requirements models.

For each version of the iCleaner on the simulation

environment, 1000 test cases of 30 s each were performed,

measuring the performance in terms of waste removed,

obstacles hits and battery failures. The generated environ-

ments differ for the number and placement of waste,

obstacles, charging stations and waste bins. The following

measures were used over the 1000 test cases, to assess three

adaptivity properties: Efficiency in collecting dirt, robust-

ness as a measure for correctly avoiding obstacles, and

failure, represented in how often the cleaner runs out of

battery.

Robustness ¼ Number of Crashes=Time ð1Þ

Efficiency ¼ DirtCollected=Time ð2Þ

Failure ¼ BatteryDrained=Time ð3Þ

4.2.4 Requirements validation and refinement

We iterated the process producing four versions of the

iCleaner. Results of the preceding version were used as a

feedback which gives rise to new requirements and bug

reports that were taken into account in the development of

the subsequent version. The iCleaner prototype exhibited

basic adaptivity properties, which mainly arise from the

interpretation of the extended goal model and the interplay

of its goal types and conditions.

The behaviour of the system was improved, basing on

quantitative (by measurements for efficiency and robust-

ness) and qualitative (by observation) feedback from an

automated testing of the implemented prototypes. This

feedback led to changes in the goal models, in the detailed

design and the implementation. Executing the requirements

Fig. 11 Part of a goal model and the corresponding generated Jadex

ADF

90 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

model and guiding the agent behaviour directly with this

goal model, wrong behaviours were localised, missing

functionalities added and modifications enacted to the

models and then mapped to the code.

In the first version of the iCleaner prototype generated

with the t2x tool form the Tropos4AS model, upon a

detailed analysis of the expected run-time behaviour for

goal achievement and on the corresponding agent’s plans,

different lacks were identified, mainly regarding agent

movement. The plans deciding the target location were

scattered in different parts of the model. The decision on

which target to select was made at a goal level, by defining

inhibition links, to give precedence to battery loading. The

resulting goal model leads to the following nominal run-

time behaviour: the agent always tried to observe the

environment, by locating new target destinations and

moving to them. If there was some waste in the range of its

cleaning tools, it was cleaned, either by absorbing or by

mopping.

In the following revisions, upon feedback from the sim-

ulation, first the conditions were reworked to improve

robustness, as can be seen in Fig. 12 which shows that a

drastic reduction in crashes was monitored in v2. This came

at the cost of a reduced efficiency. In version 3, the code of

plans defining the agent movement towards battery loading

stations and for emptying the cleaner’s internal dust box into

a waste bin were revised. Also, the code of plans for dis-

covery of new charging stations and waste bins was

improved by reusing a plan ExploreLeastSeenPlaces.

This increased efficiency, but also failure due to an empty

battery.

In version 4, to further improve efficiency, a new

alternative MoveToNearestWaste to achieve the goal

LocateNextTarget was added, which should be applied

always if there exists waste that was sensed but not yet

cleaned. Also, conditions were optimised to make the

decision on next targets depend on the location of the

loading station, when the battery is low battery, leading to

the final results (V4) in Figs. 13 and 14.

The tool support helped maintain the consistency and

traceability between goals and implemented functionalities

along the development iterations of the prototype.

5 Empirical evaluation of Tropos4AS modelling

In the above section, we have shown the applicability of

Tropos4AS at requirements-time when model validation

and refinement tasks are performed. The results illustrate

also how a self-adaptive behaviour at run-time can be

driven by requirements encoded into an executable Tro-

pos4AS model.

In this section, we describe an evaluation of the Tro-

pos4AS modelling language in comparison with the

underlying Tropos language6 by conducting two controlled0

10

20

v1 v2 v3 v4

Robustness

Average number of crashes

0.165 0.13 0.1

19.853

Fig. 12 Crashes (robustness)

0

7.5

15

v1 v2 v3 v4

8.119

Efficiency

Average waste collected

11.681

13.598
14.232

Fig. 13 Waste removed (efficiency)

0

20

40

v1 v2 v3 v4

14 13

33

16

Out of Battery

Out of battery

Fig. 14 Out of battery (failure)

6 For this evaluation, we refer to the Tropos modelling language as

defined in [9, 60] with the focus on Tropos goal diagrams, which are

mainly affected by the proposed extensions.

Requirements Eng (2017) 22:77–103 91

123

www.manaraa.com

experiments consisting of modelling and comprehension

tasks performed by a group of twelve participants. The

ultimate objective is to get empirical evidence about the

trade-off between the modelling effort by the analyst who

adopts Tropos4AS and the understanding of the system’s

adaptive properties brought by Tropos4AS.

The choice of using controlled experiments has been

performed upon a careful analysis of the literature on

empirical validation of visual modelling methods.

Indeed, despite the potential relevance, in the literature

only few attempts exist to study and validate visual mod-

elling methods through experiments. Various aspects

complicate the definition of experimental measures and

thus explain the limited application of empirical studies to

RE methods, such as the involved iterative and time-con-

suming processes, and the informal and semi-formal lan-

guages used to reflect a subjective understanding of the

domain [1]. For instance, [33] compared the two prominent

goal modelling languages i* and KAOS by an experiment

in which they simulated a complete software development

process, whereas [27] empirically evaluated the goal-ori-

ented approach Tropos against scenario-based UML Use

Cases. Different from these works, many RE methods are

evaluated by performing case studies or by applying them

to the modelling of a system, sometimes derived from

industry [12, 24, 67]. This can be a strong limit for the use

and adoption of new RE methods [10]. We present a design

for a controlled empirical study that is feasible to be con-

ducted and gives statistically accepted results and also a

valuable insight to the practical use of the modelling lan-

guages, e.g. by experts and non-experts.

Experiments To understand whether a specific mod-

elling language (here, Tropos4AS) brought improvements

to the underlying general language (Tropos), we evaluate

three main aspects: (1) the effort required for modelling;

(2) the effectiveness of modelling (i.e. the expressiveness

of models); and (3) the analyst’s understanding of the

system’s adaptive properties that we investigate through a

model comprehensibility task.

The goals of the two experiments are complementary:

The first experiment aims at comparing the two modelling

languages by asking the subjects to build and analyse some

goal-oriented models, starting from a textual requirements

description. Several measures of effort and effectiveness

have been applied (row Dependent variables (measures) in

Table 1). They include objective measures about time and

‘‘accuracy’’7 of the models built; and subjective measures

concerning the perceptions of the participants in using the

modelling languages. In the second experiment, we

examined the comprehensibility of models created by

applying the two languages.

The two experiments were executed following Wohlin’s

guidelines [68] and with 12 subjects: 6 research fellows

and 6 PhD candidates working at FBK.8 Part of the par-

ticipants have industrial experience on using modelling

Table 1 Overview of the two controlled experiments

First experiment Second experiment

Goal Evaluate the effort and effectiveness in requirements modelling

performed with the modelling languages Tropos and Tropos4AS

Evaluate the comprehensibility of requirements models

expressed in the modelling languages Tropos and

Tropos4AS

Objects Textual requirements specifications of two adaptive systems:

PMA, WMM

Requirements models of PMA/WMM in Tropos and

Tropos4AS; and textual requirements specifications

Null-

hypotheses

H01-The effort of modelling requirements with Tropos4AS is not

significantly higher than the effort of modelling with Tropos

H02-The effectiveness of Tropos4AS models is not significantly

higher than the effectiveness of Tropos models

H03-The comprehensibility of system requirements

cannot be significantly improved by using Tropos4AS

models, in comparison with Tropos models

Main factor Modelling language (treatments: Tropos and Tropos4AS) Modelling language (treatments: Tropos and Tropos4AS)

Application

domains

PMA and WMM PMA and WMM

Experiment

schedule

Overall ca. 4 h including preparation, Lab1 and Lab2 Overall 300 including Lab1 and Lab2 (fixed laboratory

times)

Dependent

variables

(measures)

Effort (a1-modelling effort; a2-perceived modelling effort; a3-

modelling effort distribution; a4-difficulty in modelling),

effectiveness (a5-perceived expressiveness; a6-perceived

language expressiveness; a7-perceived language utility; a8-

model accuracy) (Labels correspond to column Id in Table 3)

Model comprehension

7 Note that we do not aim to a formal representation of requirements

for which correctness and accuracy can be verified, as e.g. in Formal

Tropos [25].
8 Fondazione Bruno Kessler (FBK) is a research centre located in

Trento, Italy—see http://www.fbk.eu.

92 Requirements Eng (2017) 22:77–103

123

http://www.fbk.eu

www.manaraa.com

languages (such as UML and Tropos), while others have

only basic knowledge.

The experiments are performed on two software systems

that require adaptive behaviour and can be modelled with

both the general and the specific languages: the PMA

described above and a Washing Machine Manager

(WMM). WMM is an intelligent washing machine con-

troller, which adapts washing settings to user’s preferences

for energy saving and cleanness. Both systems provide

normal as well as some exceptional behaviour, and some

circumstances drive the system to change its behaviour, for

satisfying its system requirements.

In both experiments, we adopted a paired, counterbal-

anced experimental design [68] based on two laboratory

sessions and two different treatments (Tropos and Tro-

pos4AS), and four groups of 3 people each, created by

randomly dividing the 12 subjects. In this design, each

subject performs the experimental tasks twice, each time

working on a different software system and treatment. The

design mitigates learning effects for treatments and objects

and enables the application of more precise statistical

methods, having the same number of subjects for each task

assignment.

In the following, we give details about the design,

execution and analysis of the results of the first experiment.

The second experiment is instead detailed in [39] and only

summarised in this section for a comprehensive discussion

of the whole empirical evaluation.

5.1 First experiment

Focusing on modelling aspects in Tropos4AS and Tropos,

we define the following two research questions.

RQ1 How does the effort of modelling requirements with

Tropos4AS compare to the effort of modelling them with

Tropos?

RQ2 Can the effectiveness of Tropos4AS models be

compared to the effectiveness of Tropos models, for

representing requirements of an adaptive system?

Each research question has been translated to the cor-

responding null-hypothesis H0 and alternative hypothesis

Ha. The null-hypothesis typically denotes that the treatment

has no significant effect on the result. Only if statistical

significance of the results is obtained, the null-hypothesis

can be rejected in favour of the alternative hypothesis,

which denotes that there exists an effect of the treatments

on the result. We frankly expect that the Tropos4AS lan-

guage requires a higher modelling effort than the original

Tropos (e.g. it asks to explicitly model exceptional situa-

tions and conditions raising them), but we expect also that

it improves the communication effectiveness of the models

built, i.e. the models better reflect the requirements and

increase the overall system comprehensibility. Therefore,

we defined the research hypotheses with respect to RQ1

and RQ2 with the following directions (i.e. they are one-

tailed):

• H01: The effort of modelling requirements with Tro-

pos4AS is not significantly higher than the effort of

modelling with Tropos.

• Ha1: The effort of modelling requirements with Tro-

pos4AS is significantly higher than the effort of

modelling with Tropos.

• H02: The effectiveness of Tropos4AS models is not

significantly higher than the effectiveness of Tropos

models.

• Ha2: The effectiveness of Tropos4AS models is signif-

icantly higher than the effectiveness of Tropos models.

5.1.1 Experiment procedure and variables

The experiment has been conducted individually by each

participant in approx. 4 h, and it consisted of: (1) a 1-h

tutorial about Tropos and Tropos4AS to be attend; (2) a

pre-questionnaire to be filled, (3) a first session of labora-

tory concluded with a specific questionnaire, (4) a second

session of laboratory concluded with a specific question-

naire and (5) a final overall post-questionnaire. Table 2

(third row) shows some of the questions we asked in Lab/

Post-questionnaires.

The pre-questionnaire asks for the position (PhD stu-

dent, researcher) of the participants and working experi-

ence, their knowledge and experience on the two

methodologies. During the two laboratory sessions the

participants had to model PMA and WMM, one with

Tropos, and one with Tropos4AS, as assigned to them. We

asked the participants to use paper and pencil, since

modelling tools would introduce furthers threat to the

experiment regarding training and usability. Each partici-

pant received a detailed description of the experiment

procedure, the questionnaires and sequentially, for each of

the two laboratories, a summary of the modelling language

to use, the textual requirements specification of the system

to model (WMM or PMA) and two control questions,

useful to cross-check the models. The questionnaire asso-

ciated with each laboratory includes questions that aim to

capture the adequateness of the experiment objects and the

time for the modelling task, and collects the subjective

perceptions about the specific treatment applied, the actual

time spent in each modelling activity (reading the specifi-

cations, looking up the guidelines, modelling). A post-

questionnaire collects the users’ feedback about the two

languages.

Table 3 summarises the aspects investigated by means

of the questionnaires, by research question, the type of the

Requirements Eng (2017) 22:77–103 93

123

www.manaraa.com

associated variables, value range and unit and the experi-

mental task on which these variables were measured.

The variables associated with RQ1 aim to give an

objective evaluation of the average effort required to model

requirements specifications with Tropos4AS and Tropos.

They measure the time required for modelling (aspect a1 in

Table 3), the participant’s feeling about such an effort (a2,

and how they perceived the effort and specific difficulties

and limits due to the use of Tropos4AS (a3 and a4).

For RQ2 on one hand we measure the participant’s

subjective feeling about the modelling language: (1) the

expressiveness, in terms of concepts the language provides

to describe adaptive systems (a5 in Table 3); (2) the

effectiveness, in terms of potential use of the models for

implementation purposes (a6); and (3) the utility of each

single basic construct of the language (a7). On the other

hand, we get an expert evaluation of the accuracy (i.e.

‘‘correctness’’ with respect to previously defined scenarios)

of the produced models (a8).

The investigated aspects represent the dependent vari-

ables of our experiment, while the modelling languages

used (Tropos4AS or Tropos) represent the independent

variable. Each aspect has been investigated with its own

research question and associated hypotheses having the

same directions than the ones of RQ1 and RQ2, following

the template: H0x: The aspect in modelling with Tropos4AS

is not significantly better than the aspect in modelling with

Tropos, and Hax: The aspect in modelling with Tropos4AS

is significantly better than the aspect in modelling with

Tropos. All variables which denote an interval (i.e. a2,

a4,...a7) have been measured by means of questionnaires

based on a 5-point Likert scale (1: strongly agree, 2: agree,

3: (neutral) not certain; 4: disagree, 5: strongly disagree),

used by participants to answer questions such as the ones

shown in Table 2, third row. The time (for aspects a1 and

a3) is self-measured by each participant in minutes spent

on the tasks.

The evaluation of model accuracy (a8) was carried out

by an expert not involved in the rest of the experiment,

evaluating to what extent the model covers two key sce-

narios defined starting from the requirements specification

of each of the experiment objects: the first scenario char-

acterises some normal system behaviour, while the second

one includes some exceptional occurrences. An example

Table 2 Fragments of objects and questions for the two experiments

First experiment: modelling

Fragment of PMA requirements specifications to model

System story summary: The main aim of an ‘‘intelligent’’ patient monitoring agent (PMA) software is to ensure that a patient, in a ‘‘smart

home’’ environment, follows the medical instructions on eating meals and taking medicine. The system should reduce the need for human

assistance, but not bring annoyances to the patient’s life. The system can access to reliable sensors that are able to measure if the patient

takes the medicine and how often he eats. The flat is set up with loudspeakers in each room. It is also connected to the phone line for the

system to request assistance from the care assistant

Examples of questions in the Lab/Post-questionnaire

(Lab-Quest) The effort of modelling seems too high for an efficient use in practice

(Lab-Quest) The obtained model is too abstract to be able to properly guide the programmers to an implementation respecting the

requirements

(Lab-Quest) The concepts of the modelling language were detailed enough to model the requirements

(Lab-Quest) I had difficulties in modelling user preferences with contributions to softgoals

(Post-Quest) It was difficult to model the example, with all its details

(Post-Quest) I had enough time for accomplishing the modelling task

Scenario 1 for the accuracy evaluation of PMA

‘‘The patient did not eat breakfast. Now its time for lunch. Which plans will be executed? Suppose the patient will finally, also after a

reminder, not eat lunch’’

Expected result in terms of fundamental concepts: monitor lunch eating, remind for lunch, ‘‘eat lunch’’ fails and ‘‘eat at least 2 meals’’ fails,

call care assistant

Second experiment: comprehension

Examples of comprehension and post-questionnaire questions for PMA

(Lab-Quest) On which occasion can the dinner be skipped?

(Lab-Quest) With which sensors does the system have to interact to get the necessary information?

(Lab-Quest) The effort of modelling seems too high for an efficient use in practice

(Post-Quest) The comprehension questions were clear

(Post-Quest) I was able to extract the asked information from the goal model

94 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

scenario together with the expected results for an evalua-

tion can be found in the centre of Table 3. The expert

analysed if the modelling concepts were correctly used and

counts plans activated and goals failing in each scenario.

5.1.2 Data analysis and statistical evaluation

To analyse the results, one or more answers provided in the

questionnaires were mapped to each aspect (a2 to a7). For

each aspect, we then applied a statistical analysis to eval-

uate the corresponding null-hypothesis. The results were

then grouped to answer RQ1 and RQ2. Some questions

were posed for both treatments, and thus they have been

directly compared with each other. The remaining ques-

tions have been compared with the ‘‘neutral’’ value on the

Likert scale used.

Considering the nature of the variables (not necessarily

normally distributed), the limited number of data points

(two for each object), and the design of the experiment

(paired and balanced, with both treatments applied to each

subject), we selected the nonparametric paired Wilcoxon

test [16] for evaluating each aspect for the two treatments

(Tropos4AS and Tropos). A 5 % significance level was

adopted for the obtained p value to determine whether the

null-hypothesis can be rejected or not (in this case, no

conclusion can be drawn neither on rejection nor on

acceptance of the hypothesis). Hence, we rejected a

null-hypothesis only if the probability that it is true, the

p value, is smaller than 0.05 [68].

Furthermore, for each data set we computed average l,
median, and the Cohen.d effect size (for a paired design:

d ¼ l2�l1
rD

, where rD is the standard deviation of the pair-

wise differences) to analyse trends and to estimate the

magnitude of the obtained result (as defined by Cohen [15],

0.2: small, 0.5: medium, 0.8: large effect).

Co-factors are all those factors different from the two

treatments, which could possibly have an (undesired and/

or uncontrolled) impact on the results of the experiment.

We particularly tested if object, subject experience and

subject position had a statistically significant impact on

the results, by a two-way analysis of variance (ANOVA)

test and a significance level of 0.05 for the obtained

p value.

5.1.3 Results and interpretation

First, an evaluation of the adequateness of the experimental

settings has been conducted by means of questions in the

pre- and post-questionnaires asking whether the partici-

pants experienced any difficulty during the experiment,

Table 3 Main experiment variables and their association with the research questions RQ1 and RQ2

Id Aspect Variable type Values Source

RQ1:Modelling effort

a1 Modelling effort Ratio (continuous) {1...} sec. Lab

a2 Perceived modelling effort

a2.a Overall effort Interval 2 {1,...,5} Lab-Quest

a2.b Tropos4AS additional effort Interval 2 {1,...,5} Post-Quest

a3 Modelling effort distribution

a3.a Recalling modelling language specification Ratio (continuous) {1,...} sec. Lab-Quest

a3.b Understanding requirements specification Ratio (continuous) {1,...} sec. Lab-Quest

a3.c ACtual modelling Ratio (continuous) {1,...} sec. Lab-Quest

a4 Difficulty in modelling

a4.a Difficulty of modelling Interval 2 {1,...,5} Post-Quest, Lab-Quest

a4.b Difficulty in using the modelling language Interval 2 {1,...,5} Lab-Quest

RQ2 : Modelling effectiveness

a5 Perceived language expressiveness

a5.a Effectiveness in capturing requirements Interval 2 {1,...,5} Post-Quest

a5.b Adequateness of the language concepts Interval 2 {1,...,5} Post-Quest

a6 Perceived language effectiveness Interval 2 {1,...,5} Lab-Quest

a7 Perceived language utility

a7.a Utility for modelling conditions Interval 2 {1,...,5} Lab-Quest

a7.b Utility for modelling failures Interval 2 {1,...,5} Lab-Quest

a7.c Overall language utility Interval 2 {1,...,5} Lab-Quest

a8 Model accuracy Interval 2 {0,...,4} Lab

Main variables are in bold

Requirements Eng (2017) 22:77–103 95

123

www.manaraa.com

whether they worked under time pressure, and whether

object descriptions and tasks we asked to perform were

clear. The participants’ experience with the use of RE

modelling languages reflects the presence of more experi-

enced subjects (mostly researchers) and the less experi-

enced ones (mostly PHD students). However, the initial

understanding of both modelling languages was perceived

as adequate and the participants did also not reveal par-

ticular difficulties in the use of both Tropos4AS and Tro-

pos. Also, the tasks and objects of the experiment were

considered to be adequate, well-understood and nearly

equally difficult, for both languages. Therefore, we can

claim that the experimental settings were adequate.

Table 4 shows the results obtained by comparing the

values of the variables collected for both treatments (paired

analysis) and the results for variables concerning only

Tropos4AS, compared to the neutral response 3 in the

5-point Likert scale (non-paired analysis). In the following,

we describe and c the single results, which were then

aggregated to answer the research questions.

5.1.4 Findings about RQ1: effort

(a1) Fig. 15 (centre) contains a boxplot for the overall time

spent by the participants for the modelling task (a1). It

shows that modelling requirements specifications with

Tropos4AS requires more time than modelling them with

Tropos (75 vs. 49.5 min for the median). With a p value of

0.018, the result is statistically significant, and thus the

null-hypothesis H0a1 can be rejected. Intuitively, this can

be explained by the richer models obtained with

Tropos4AS.

(a2) However, the participants perceive that the effort

of modelling with Tropos4AS is not particularly higher

than with Tropos (a2.a). This fact cannot be proven sta-

tistically (we cannot reject H0a2), but the medians (3 for

Tropos vs. 3.5 for Tropos4AS) show a quite similar trend.

We can speculate that giving the possibility for e.g. an

explicit modelling of conditions and of the exceptional

flows will give the possibility to express the requirements

in a more intuitive way and thus decreases the perceived

modelling effort. Moreover, the participants agree that it is

worth to put additional effort in modelling details of the

requirements with Tropos4AS, with a median of 2 (a2.b)

and statistical significance.

(a3) Tropos4AS requires more effort for reading the

language specification (a3.a), while no statistically sig-

nificant difference exists for the other activities (a3.b,

a3.c), so we cannot reject H0a3. The result is also con-

firmed by medians and Cohen-d effect sizes: for reading

and understanding the example and for modelling it, the

time difference is negligible (11 % in reading: median of

24.6 min for Tropos vs. 27.3 for Tropos4AS; 3 % in

modelling: 21.3 min for Tropos vs. 23.25 for Tropos4AS).

The time averages show the same trend: a huge difference

in reading the language specification, but limited differ-

ences for requirements reading and modelling.

(a4) Tropos4AS seems not to give more difficulties

than Tropos for modelling the requirements of the object.

Also this result cannot be confirmed statistically, we cannot

reject H0a4, but by the average the participants perceived

the same or even slightly less difficulty in using Tropos4AS

than Tropos. This result can be explained taking into

account further comments of participants: the additional

Table 4 Statistical analysis: comparison Tropos versus Tropos4AS

Aspect Paired analysis? Median Tropos Median Tropos4AS Reject null-HP? p value Cohen-d effect size

a1 [min] Y 49.5 75 Y 0.018 0.83 (large)

a2.a Y 3.5 3 N 0.6 0.18 (negligible)

a2.b N – 2 Y 0.0043 1.16 (large)

a3.a [min] Y 3.65 9.35 Y 0.0046 0.87 (large)

a3.b [min] Y 24.6 27.3 N 0.4 0.21 (small)

a3.c [min] Y 21.3 23.25 N 0.47 0.29 (small)

a4.a Y 3 3 N 0.88 0 (small)

a4.b Y 3 3 N 0.42 0.27 (small)

a5.a Y 4 2 Y 0.023 1.7 (large)

a5.b Y 3 2.5 N 0.2 0.42 (small)

a6 Y 4 2 Y 0.0039 0.68 (medium)

a7.a N – 2 Y 0.002 1.6 (large)

a7.b N – 2 Y 0.006 1.04 (large)

a7.c N – 2 Y 0.001 2.1 (large)

a8 Y 3 4 Y 0.005 0.7 (medium)

96 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

modelling concepts introduced with Tropos4AS seem not

only to bring higher complexity, but also to facilitate

expressing the modelling intentions.

Overall, we have to answer in affirmative way to the

research question RQ1, hence we conclude: Yes, the effort

required to apply Tropos4AS is higher than the effort

required to apply Tropos. However, the additional effort is

not perceived by the users as such. They do not face par-

ticular difficulties and spent significantly more time only

for studying the new Tropos4AS modelling concepts.

5.1.5 Findings about RQ2: effectiveness

(a5) The participants agree that Tropos4AS produces

models that are more expressive than Tropos models

(a5.a). Moreover, the medians and the effect size show a

trend that the participants were more confident for Tro-

pos4AS than for Tropos and that the concepts of the

modelling language are detailed enough for modelling the

requirements. However, the relative null-hypothesis H0a5

cannot be rejected, (a5.b).

(a6) Tropos4AS is perceived to be more effective than

Tropos for producing models that are concrete and can

guide the developers to the implementation. H0a6 can be

rejected with statistical significance.

(a7) The subjects agree that enriching Tropos is useful

for modelling adaptive systems (in general and also in

particular for conditions and failures). H0a7 can be rejected.

(a8) The scenario-based analysis of model accuracy

conducted by the expert shows with statistical evidence

that the models produced with Tropos4AS are more

accurate than the models produced with Tropos. H0a8 can

be rejected (a8) (an example of Tropos4AS model obtained

from one participant for PMA, transcribed from the origi-

nal and slightly cleaned it for a better representation, is

shown in Fig. 15 left). Tropos4AS models covered the

evaluation scenarios by more than 87 %, while the Tropos

models covered the scenarios only by 66 % of relevant

concepts selected by the expert for the considered scenarios

and objects (Fig. 15 right).

Overall, we can thus answer in an affirmative way to the

research question RQ2 and conclude that: Yes, Tropos4AS

allows the users to produce models more effective than

Tropos for representing requirements of an adaptive

system.

5.1.6 Additional results

An additional analysis of the results shows various findings

that are not directly related to the research questions, but

important for understanding how Tropos and Tropos4AS

are used in practice, by both experienced and novice

software engineers. The participants spent from 27 to

90 min for the Tropos assignment, and from 37 to 110 min

for Tropos4AS, with high, but very similar variances. On

average, for both treatments together, the participants spent

Fig. 15 Modelling task: a sample model to give the reader an idea about the models built by participants, and boxplots for modelling time (in

minutes) and model accuracy (max. 4 points per scenario)

Requirements Eng (2017) 22:77–103 97

123

www.manaraa.com

47 % of their time with the reading of requirements and

only 42 % with modelling. 11 % were used for looking at

the language specification. This time could be reduced with

better training. Specifically for Tropos4AS, on average

59 % of the modelling time was used for goal modelling,

25 % for conditions modelling and only 16 % for failure

modelling.

To get an additional indicator of model complexity, we

gave a look on the size of the models drawn during the

experiments. They had a median of 19 entities and 28

relationships for Tropos models, and a median of 30 enti-

ties and 35 relationships for Tropos4AS models. Out of

them, 17 entities and 19 relationships are Tropos concepts.

These numbers can give an idea that the use of the addi-

tional Tropos4AS concepts increased the model size, but

also reduced the need for using Tropos relationships to

model complex behaviours, as it was also pointed out in

some of the participants’ comments.

Furthermore, the participants used most of the exten-

sions according to the modelling philosophy, but had some

difficulties with the semantics of the different types of

condition and goals, truly due to the short training. How-

ever, as we have seen in (a8) the accuracy of the models

created with Tropos4AS is significantly higher, compared

to Tropos models.

To exclude an undesired impact on the experiment

validity, three co-factors were analysed for the presence of

a statistically significant interaction with the experiments’

treatments: the subjects’ working position, the subject ex-

perience in using RE methods and modelling languages,

and the objects (WMM, PMA). An ANOVA test could

reveal only a very limited impact of co-factors to the

experiment. The only statistically relevant result refers to

participants having experience in using RE methods (in

general, despite the treatment). They produce more correct

models than other participants (p value 0.04). Furthermore,

this group of participants perceives less effort in modelling

(p value 0.0049) and gives stronger agreement to the claim

that the concepts of the Tropos4AS modelling languages

are detailed enough to model the requirements (p values

0.02 and 0.024). However, no statistically significant

impact can be seen considering the interaction between

experience and treatment. This can be explained by the

random, even distribution of the experienced participants in

the experiment groups.

5.2 Summary of results for the second experiment

To provide a comprehensive overview on the study here,

we recall the main results of the second experiment, whose

aim is to evaluate the comprehensibility of models created

by applying the two modelling languages [39], giving

answer to:

RQ3 How does the comprehension of models created

with Tropos4AS compare to the comprehension of

models created with Tropos?

The experiment was performed three months after the

first one, with the same participants. The overall duration

was about thirty minutes, during which several compre-

hension questions were answered in a concise, fixed time

using both a model (either Tropos or Tropos4AS) and the

corresponding textual requirements specification. Exam-

ples are given in Table 2. Participants were also asked to

fill a post-questionnaire with additional questions to

strengthen the results of the study, and questions devoted to

assess the validity of the experiment set-up.

The accuracy of the answers provided by participants to

the comprehension questions was assessed by computing

precision, recall and f-measure for each participant’s

answer with respect to the gold-standard answers provided

by an expert. The statistical analysis performed on the

collected data exploits the same paired Wilcoxon test as in

the modelling experiment.

Figure 16 shows boxplots of the obtained results for

precision, recall and f-measure. We observe that Tro-

pos4AS significantly improved both precision and recall,

and consequently the f-measure, of the participant answers

(referring to the median, respectively, form 70 to 90 %,

form 58 to 75 % and form 65 to 81 %). These results are

statistically relevant (p value \5%) and supported by

medium effect size. Therefore, we can claim with statistical

evidence that a Tropos4AS model, together with the textual

specifications, is more effective for retrieving accurate

information than a Tropos model, together with the same

textual specifications.

To check whether the information to answer the ques-

tions was extracted from the models or from the textual

specifications, we analyse the post-questionnaire, which

gives a self-assessment about the use of the model and

textual specifications. The analysis shows with statistical

significance that the amount of information extracted from

Tropos4AS models is quantitatively larger than from

Fig. 16 Boxplots for the distribution of the averages per participant,

for precision and recall of the single answers to the comprehension

questions

98 Requirements Eng (2017) 22:77–103

123

www.manaraa.com

Tropos models. Similarly, the amount of information

extracted from the textual requirements is quantitatively

lower when using Tropos4AS than when using Tropos

models. A total of 9 out of 12 subjects (75 %) stated that

using Tropos they needed to extract a substantial amount of

information from the textual specifications to answers to

the comprehension questions, compared to 2 out of 12 for

Tropos4AS.

These results confirm that Tropos4AS is more effective

than Tropos to support retrieving accurate information

from the requirements specifications of adaptive systems.

We hence give positive answer to RQ3: The comprehen-

sibility of system requirements can be significantly

increased by using Tropos4AS models, in comparison with

Tropos models.

An analysis of various co-factors did not reveal any

statistically relevant impact of participant experience,

participant working position, and objects in the achieved

results. We could, however, observe that participants with

high experience in Tropos did not significantly increase

their performance by the use of Tropos4AS. Instead, less

experienced subjects’ performance was more heavily

influenced by the use of Tropos4AS, improving by

20–25 % the correctness of their comprehension task.

5.3 Overall findings of the Empirical Study

Observing the results achieved, we can conclude that the

effort required to apply Tropos4AS is higher than the effort

required to apply Tropos (RQ1). However, the additional

time required by Tropos4AS was spent mainly for learning

the language syntax and semantics. In fact, this additional

effort is not perceived as such by the participants, and they

did not face particular difficulties in using Tropos4AS.

Tropos4AS allows the participants to produce models more

effective and accurate than Tropos for representing

requirements of an adaptive system (RQ2), and the models

obtained contribute better to the comprehension of system

requirements (RQ3), especially for novice users.

The results of this empirical evaluation met our expec-

tations and strengthen them. In particular, the use of Tropos

and the Tropos4AS extensions by novice users was better

than expected and their comments show that the additional

constructs bring few more complexity, but facilitate

expressing a set of requirements of simple adaptive sys-

tems such as the examples used. This was confirmed, from

a different viewpoint, by the comprehension experiment.

5.4 Threats to validity

The study was performed with a balanced design with both

treatments applied to each participant, to limit the learning

effect and the impact of the participants’ experience. This

design allows to use proper statistical tests to validate the

null-hypotheses. Furthermore, to limit the learning effect

on the study we organised a pre-experiment tutorial in

which we introduced Tropos and Tropos4AS to the par-

ticipants. To limit the authors’ bias, the design and con-

duction of the experiments were carried out by the author

not involved in the definition of the Tropos4AS modelling

language. The objects under study (i.e. the systems to

model) are fragments of real adaptive systems, even if not

trivial—in fact, they required a quite high understanding

and modelling effort. The use of more complex objects

would not have been treatable in an empirical study of such

extent. An evaluation of the framework in an industrial

case study, however, would give complementary results to

those obtained.

To limit potential threats caused by a low number of

available subjects, in our experiment we: (1) involved only

experienced subjects, avoiding to include junior students;

(2) adopted a paired, counterbalanced experimental design

[68]: that is we involved 12 subjects and we asked each of

them to work with the two considered treatments (i.e.

modelling languages), and thus we overall collected 24

data points; and (3) used nonparametric statistical tests to

analyse the collected data: that is we used tests known to

adequately work also with small numbers [61, 65]. In fact,

these tests can be used when the data is not of sufficient

quality to satisfy the assumptions of parametric tests, which

are preferred when the assumptions are met because they

are more sensitive.

The evaluation of the variables we collected was both

objective and subjective. For the variables measured on a

5-point Likert scale we exclusively relied on the partici-

pants’ perceptions and opinions while with the evaluation

of models and the answers provided to the comprehension

questions we obtained more objective measures. In line

with studies in the literature (e.g. [55]) we asked an expert

having a 10-year experience in the use of RE methods and

requirements specification modelling to define a gold

standard (in terms of both ‘‘optimal’’ models and ‘‘correct’’

answers) and to contrast the models drawn by each par-

ticipant with it, by objective measures. We consider an

expert-based evaluation to be in between a subjective

evaluation (i.e. subjects give their opinion about modelled

system properties) and an objective evaluation (e.g.

objective metrics are used to measure system design

properties). An objective evaluation of the accuracy of

models produced by humans for capturing system

requirements (de-facto strongly human-oriented artefacts)

cannot be easily conducted since different and complex

(human and subjective) factors influence both the model

properties [1, 36, 58] and their evaluation. In such a case,

an appealing option consists in involving one (or more)

recognised experts. The expert is asked to produce the

Requirements Eng (2017) 22:77–103 99

123

www.manaraa.com

artefact according to his experience and then this artefact is

compared (following specific and predefined objective

criteria) with the ones produced by the experimental

subjects.

To encourage a repetition of the studies with different

participants, the experiment packages for both experiments

are available online9

6 Related work

Several approaches have been proposed in the last years to

address the challenges in requirements engineering for self-

adaptive systems that were pointed out in the already

mentioned research agendas[12, 20, 22, 56, 57]. Most of

them are analysed in a systematic literature review [69]. In

this section, we discuss those that, analogously to Tro-

pos4AS, attempted at addressing issues related to uncer-

tainty at requirements-time, synchronisation between

requirements and architecture, and requirements as run-

time objects.

The requirements language RELAX [67] provides the

analyst with the possibility to specify ‘‘relaxable’’

requirements through the use of a vocabulary (‘‘may’’,

‘‘close to’’, etc.) that expresses need of flexibility, either in

the degree of satisfaction of a requirement or in the ways a

requirement can be implemented. Goal-oriented analysis,

such as the KAOS obstacle analysis ([63]), is used [13] to

identify alternative options for the achievement of a

requirement. Requirements elicitation as supported by the

RELAX approach could be used in Tropos4AS, which in

addition covers later phases of software engineering.

A similar approach [4] exploits KAOS to represents

requirements for adaptive systems that can admit small or

transient fulfilment violations, which do not compromise

the intended behaviour of a system, e.g. restarting a

washing machine that stopped unexpectedly, without re-

executing the washing program since the beginning. The

concepts of fuzzy goals and constraints are introduced to

capture a certain degree of uncertainty, while the concept

of adaptive goals allows defining run-time countermea-

sures in a parametric way, with respect to the satisfaction

level of other goals. These approaches address uncertainty

at requirements-time by relaxing goal satisfaction criteria

using fuzzy logic, while in Tropos4AS uncertainty man-

agement is performed through modelling alternative

behaviours, associated with environment conditions and

qualities. The Tropos4AS goal model component supports

decisions of the system at run-time, which is driven by the

optimisation of softgoals together with the continuous

evaluation of conditions of the environment.

Various works share with Tropos4AS the idea of using

goal-oriented modelling for variability analysis at

requirements-time. [26] and [7] use, respectively, i* and

KAOS, and propose to model each possible system con-

figuration in a distinct goal model, together with the con-

ditions for transition between these configurations. In

contrast, our approach captures the variability in a single

model, which simplifies model evolution and consistency,

especially during the earlier development phases. In [52]

which proposes a modelling language based on

Techne [29], the notion of adaptive requirements is used to

express functional and non-functional properties whose

specification rests on a set of variants, each one associated

with specific activation conditions, and which can lead to

different satisfaction degrees for qualities and preferences.

Complex goal achievement behaviours can, however, not

be captured.

Similarly, [59] proposes the notion of awareness

requirement, to be used for complementing a given

requirements model with a specification of feedback loop

mechanisms and indicators of success rate in requirements

fulfilment. This specification is implemented by event-

condition-action rules in an ad hoc execution framework,

while we propose to use a BDI-agent-based implementa-

tion of the behaviour for requirements simulation, but do

not tie to a specific implementation framework.

As in Tropos4AS, other works extend goal-oriented

models to enrich their expressiveness, thus enabling to

express the environment or contextual parameters and their

monitoring, when modelling adaptive systems. [32] enri-

ches i* models with various annotations and variable

contribution to softgoals. The enriched language can model

the environment and its influence on the system behaviour

only at a high-level, through i* delegation. Unlike Tro-

pos4AS, with this approach the run-time goal satisfaction

behaviour cannot be specified.

The goal decomposition tree (GDT) approach [34]

allows specifying and validating the run-time behaviour of

an agent situated in a dynamic environment, by lazy and

necessary satisfaction conditions and guaranteed properties

in case of failure. GTD includes a translation to executable

code, but is conceived for a formal specification of soft-

ware and does not define a methodology. Similarly, [21]

defines a goal model for dynamic systems (GMoDS),

including goal precedence and triggering relationships

implemented by assigning the leaf goals to agent roles in

the MAS. By this process, high-level information on goal

decomposition and alternatives is difficult to be traced back

at run-time. Moreover, the provided MAS simulation

environment does not make use of goal-oriented

technology.

9 The questionnaires, a detailed description and the anonymised raw

data of the experiments are available at http://selab.fbk.eu/morandini/

taom4e_eval/.

100 Requirements Eng (2017) 22:77–103

123

http://selab.fbk.eu/morandini/taom4e_eval/
http://selab.fbk.eu/morandini/taom4e_eval/

www.manaraa.com

The problem of synchronising system requirements and

architecture is addressed in [53] that proposes an archi-

tecture to enable requirements-driven adaptation of ser-

vice-based applications. It exploits event-condition-action

rules to represent requirements artefacts as run-time

objects. Differently, in Tropos4AS the run-time represen-

tation of requirements is given using executable goal

models, thus preserving the goal-oriented specification at

run-time.

Ideas similar to ours are considered in [17], putting the

focus on the reconfiguration of distributed agent systems

and the presentation of a run-time architecture, while

Tropos4AS has its main focus on requirements engineering,

and the adaptation of single agents.

In [18] run-time goal models are introduced, which are

specifically annotated with achievement rules, while in

Tropos4AS we give semantics to the different goal types,

which are intended for requirements analysis and run-time

phases. The proposal in [14] combines requirements-driven

adaptation by reasoning on goal models, and architecture-

driven adaptation. They propose a framework for run-time

adaptation, which considers the requirements goal model

and a model of design decisions, to create a new run-time

model, thus being in part complementary to our work,

which focuses on modelling adaptivity and verification of

modelled behaviours at a requirements level.

Run-time adaptation by providing to the system (or to

the platform it is deployed on) mechanisms to reason on

requirements at run-time is also investigated in recent

research, which borrow knowledge representation and

reasoning techniques developed in the Artificial Intelli-

gence field. For instance, Bayesian network techniques are

used in [5], and case-based reasoning techniques in [51].

These types of run-time reasoning on requirements could

be integrated with those provided by Tropos4AS to over-

come the limits of run-time adaptation based on the

selection among pre-defined behaviours and pave the way

towards addressing online evolution of software

application.

7 Conclusion

In this paper, we gave a full account of the Tropos4AS

framework for engineering requirements of adaptive sys-

tems. Tropos4AS combines in a single framework

abstractions and techniques from different paradigms,

namely goal-oriented requirements engineering, agent-ori-

ented software engineering and BDI-agent software plat-

forms. Moreover, it paves the way to a complete formal

binding between the intended goal model semantics at

requirements engineering time and the run-time behaviour.

Developing the Tropos4AS framework, we addressed main

challenges highlighted in various research agendas for

adaptive systems, [6, 20, 22], specifically those concerning

requirements-time uncertainty, the need of a run-time

representation of requirements and the synchronisation of

requirements with the system architecture. A tool-sup-

ported mapping of Tropos4AS requirements models to

Jadex BDI agents has been introduced, but the require-

ments models can be straightforwardly used for other agent

and object-oriented languages, by implementing a mid-

dleware layer with monitoring and goal evaluation

functionalities.

The applicability of prototype simulation of Tropos4AS

models for requirements validation and refinement is

illustrated through the iCleaner case study.

Furthermore, the paper presented an empirical evalua-

tion of the Tropos4AS modelling language, consisting of

two controlled experiments, aimed at investigating the

comprehensibility, effectiveness and modelling effort in

comparison with Tropos. We described its experimental

design and execution and discussed the results, which show

that Tropos4AS is more effective than Tropos in describing

requirements of adaptive systems, especially when used by

novices. The experiment design can be reused for evalu-

ating the performance of other conceptual modelling lan-

guages that have been defined as extensions for a specific

domain. The positive results indicate that more specific

empirical studies can be conduced to evaluate particular

aspects and properties of Tropos4AS or to characterise the

adoption of Tropos4AS in specific contexts and for specific

purposes (e.g. system implementation and detection of

design flaws).

We believe that Tropos4AS provides opportunities for

further investigation on software evolution motivated by

requirements changes. Supporting the systems’ users to

express requirements changes with respect to the existing

requirements models, and to motivate the extension with

new system capabilities, will be a possible follow-up of this

work. Another aspect to be considered in future is the

adaptation and optimisation of the software behaviour by

cooperation of multiple agents in the system.

Additionally, a formalisation of proactive behaviours

and the exploitation of machine learning techniques to

enable proactivity and a dynamic modifications of goal-

and failure-models on the basis of the execution history

seems worth to be investigated for run-time evolution.

References

1. Aranda J, Ernst N, Horkoff J, Easterbrook S (2007) A framework

for empirical evaluation of model comprehensibility. In: ICSE

workshop on modeling in software engineering (MISE ’07), p 7

Requirements Eng (2017) 22:77–103 101

123

www.manaraa.com

2. Asnar Y, Bryl V, Giorgini P (2006) Using risk analysis to eval-

uate design alternatives. In: AOSE, pp 140–155

3. Avizienis A, Laprie JC, Randell B, Landwehr CE (2004) Basic

concepts and taxonomy of dependable and secure computing.

IEEE Trans Dependable Sec Comput 1(1):11–33

4. Baresi L, Pasquale L, Spoletini P (2010) Fuzzy goals for

requirements-driven adaptation. In: Proceedings of the 2010 18th

IEEE international requirements engineering conference, IEEE

Computer Society, pp 125–134

5. Bencomo N, Belaggoun A, Issarny V (2013) Dynamic decision

networks for decision-making in self-adaptive systems: a case

study. In: 8th International symposium on software engineering

for adaptive and self-managing systems SEAMS, San Francisco,

pp 113–122

6. Bencomo N, Whittle J, Sawyer P, Finkelstein A, Letier E (2010)

Requirements reflection: requirements as runtime entities. In:

ICSE 2010, vol 2, pp 199–202

7. Berry D, Cheng B, Zhang J (2005) The four levels of requirements

engineering for and in dynamic adaptive systems. In: Proceedings

of the 11th international REFSQ workshop, Porto, Portugal

8. Braubach L, Pokahr A, Moldt D, Lamersdorf W (2004) Goal

representation for bdi agent systems. In: PROMAS, pp 44–65

9. Bresciani P, Giorgini P, Giunchiglia F, Mylopoulos J, Perini A

(2004) Tropos: an agent-oriented software development

methodology. Auton Agents Multi-Agent Syst 8(3):203–236

10. Brun Y (2010) Improving impact of self-adaptation and self-

management research through evaluation methodology. In: Pro-

ceedings of software engineering for adaptive and self-managing

systems (SEAMS10), pp 1–9

11. Cailliau A, van Lamsweerde A (2012) A probabilistic framework for

goal-oriented risk analysis. In: Proceedings of the 20th IEEE inter-

national conference on requirements engineering (RE 2012). IEEE

12. Cheng BHC, de Lemos R, Giese H, Inverardi P, Magee J (eds)

(2009a) Software engineering for self-adaptive systems (outcome

of a Dagstuhl Seminar). Lecture notes in computer science, vol

5525. Springer

13. Cheng BHC, Sawyer P, Bencomo N, Whittle J (2009b) A goal-

based modeling approach to develop requirements of an adaptive

system with environmental uncertainty. In: MODELS ’09: 12th

International conference on model driven engineering languages

and systems. Springer, pp 468–483

14. Chen B, Peng X, Yu Y, Nuseibeh B, Zhao W (2014) Self-

adaptation through incremental generative model transformations

at runtime. In: 36th international conference on software engi-

neering, ICSE ’14. Hyderabad, pp 676–687

15. Cohen J (2004) Statistical power analysis for the behavioral

sciences. Lawrence Erlbaum Associates, Hillsdale

16. Dalgaard P (2008) Introductory statistics with R (statistics and

computing), 2nd edn. Springer, Berlin

17. Dalpiaz F, Giorgini P, Mylopoulos J (2013) Adaptive socio-

technical systems: a requirements-based approach. Requir Eng

18(1):1–24

18. Dalpiaz F, Borgida A, Horkoff J, Mylopoulos J (2013) Runtime goal

models: Keynote. In: IEEE 7th international conference on research

challenges in information science, RCIS 2013. Paris, pp 1–11

19. Dastani M, van Riemsdijk MB, Meyer JJC (2006) Goal types in

agent programming. In: ECAI, pp 220–224

20. de Lemos R, Giese H, Müller HA, Shaw M et al (2010) Software

engineering for self-adaptive systems: a second research road-

map. In: de Lemos R, Giese H, Müller HA, and Shaw M (eds)

Software engineering for self-adaptive systems II. Lecture Notes

in Computer Science, vol 7475. Springer, Berlin, pp 1–32

21. DeLoach SA, Miller M (2009) A goal model for adaptive com-

plex systems. In: International Conference on Knowledge-Inten-

sive Multi-Agent Systems (KIMAS 2009), St. Louis, MO

22. Di Nitto E, Ghezzi C, Metzger A, Papazoglou MP, Pohl K (2008)

A journey to highly dynamic, self-adaptive service-based appli-

cations. Autom Softw Eng 15(3–4):313–341

23. Duff S, Harland J, Thangarajah J (2006) On proactivity and

maintenance goals. In: AAMAS ’06: proceedings of the fifth

international joint conference on autonomous agents and multi-

agent systems. ACM, New York, pp 1033–1040

24. Estrada H, Rebollar AM, Pastor O, Mylopoulos J (2006) An

empirical evaluation of the i* framework in a model-based

software generation environment. In: CAiSE, pp 513–527

25. Fuxman A, Liu L, Mylopoulos J, Roveri M, Traverso P (2004)

Specifying and analyzing early requirements in tropos. Requir

Eng 9(2):132–150

26. Goldsby HJ, Sawyer P, Bencomo N, Hughes D, Cheng BHC

(2008) Goal-based modeling of dynamically adaptive system

requirements. In: ECBS 08, Belfast, Northern Ireland

27. Hadar I, Kuflik T, Perini A, Reinhartz-Berger I, Ricca F, Susi A

(2010) An empirical study of requirements model understanding:

use case vs. Tropos models. In: SAC, pp 2324–2329

28. Hindriks KV, van Riemsdijk MB (2007) Satisfying maintenance

goals. In: DALT, pp 86–103

29. Jureta IJ, Borgida A, Ernst NA, Mylopoulos J (2010) Techne:

towards a new generation of requirements modeling languages

with goals, preferences, and inconsistency handling. In: 18th

IEEE International requirements engineering conference. Sydney,

pp 115–124

30. Kephart JO, Chess DM (2003) The vision of autonomic com-

puting. IEEE Computer 36(1):41–50

31. Kotsiantis SB (2007) Supervised machine learning: a review of

classification techniques. In: Conference on emerging artificial

intelligence applications in computer engineering. IOS Press,

Amsterdam, pp 3–24

32. Lapouchnian A, Yu Y, Liaskos S, Mylopoulos J (2006)

Requirements-driven design of autonomic application software.

In: CASCON, pp 80–94

33. Matulevicius R, Heymans P (2007) Comparing goal modelling

languages: an experiment. In: REFSQ, pp 18–32

34. Mermet B, Simon G (2009) GDT4MAS: an extension of the GDT

model to specify and to verify multiagent systems. In:

AAMAS’09, pp 505–512

35. Molesini A, Omicini A, Viroli M (2009) Environment in agent-

oriented software engineering methodologies. Multiagent Grid

Syst 5(1):37–57

36. Moody D (2007) What makes a good diagram? improving the

cognitive effectiveness of diagrams in is development. Adv Inf

Syst Dev pp 481–492

37. Morandini M (2011) Goal-oriented development of self-adaptive

systems. PhD thesis, DISI, Università di Trento, Italy. http://

eprints-phd.biblio.unitn.it/511

38. Morandini M, Dalpiaz F, Nguyen C, Siena A (2014) The tropos

software engineering methodology. In: Cossentino M, Hilaire V,

Molesini A, Seidita V (eds) Handbook on agent-oriented design

processes. Springer, Berlin, pp 463–490

39. Morandini M, Marchetto A, Perini A (2011) Requirements

comprehension: a controlled experiment on conceptual modeling

methods. In: Proceedings of the first workshop on empirical

requirements engineering (EmpiRE11)

40. Morandini M, Migeon F, Gleizes MP, Maurel C, Penserini L,

Perini A (2009a) A goal-oriented approach for modelling self-

organising MAS. In: Proceedings of the 10th international

workshop on Engineering Societies in the Agents’ World (ESAW

2009). LNCS, vol 5881. Springer

41. Morandini M, Penserini L, Perini A (2008) Automated mapping

from goal models to self-adaptive systems. In: ASE 2008 Demo

session, pp 485–486

102 Requirements Eng (2017) 22:77–103

123

http://eprints-phd.biblio.unitn.it/511
http://eprints-phd.biblio.unitn.it/511

www.manaraa.com

42. Morandini M, Penserini L, Perini A (2008) Modelling self-

adaptivity: a goal-oriented approach. In: 2nd IEEE international

conference on self-adaptive and self-organizing systems

(SASO’08). IEEE, pp 469–470

43. Morandini M, Penserini L, Perini A (2008) Towards goal-ori-

ented development of self-adaptive systems. In: SEAMS ’08:

workshop on software engineering for adaptive and self-manag-

ing systems. ACM, New York, pp 9–16

44. Morandini M, Penserini L, Perini A (2009) Operational semantics

of goal models in adaptive agents. In: 8th International confer-

ence on autonomous agents and multi-agent systems (AAMAS),

IFAAMAS

45. Nguyen CD, Perini A, Tonella P (2008) eCAT: a tool for

automating test cases generation and execution in testing multi-

agent systems (demo paper). In: 7th International conference on

autonomous agents and multiagent systems (AAMAS), IFAAMS,

pp 1669–1670

46. Nguyen CD, Perini A, Tonella P (2010) Goal-oriented testing for

mass. Int J Agent Oriented Softw Eng 4(1):79–109. doi:10.1504/

IJAOSE.2010.029810

47. Omicini A, Ricci A, Viroli M (2006) Agens Faber: toward a

theory of artefacts for MAS. Electron Notes Theor Comput Sci

150(3):21–36

48. Padgham L, Winikoff M, DeLoach SA, Cossentino M (2008) A

unified graphical notation for aose. In: AOSE, pp 116–130

49. Penserini L, Perini A, Susi A, Mylopoulos J (2007) High vari-

ability design for software agents: extending tropos. ACM Trans

Auton Adapt Syst (TAAS) 2(4):16–25

50. Perini A, Susi A (2004) Developing tools for agent-oriented

visual modeling. In: Lindemann G, Denzinger J, Timm I, Unland

R (eds) Multiagent system technologies. Proceedings of the

second German conference, MATES 2004. LNAI, vol 3187.

Springer, pp 169–182

51. Qian W, Peng X, Chen B, Mylopoulos J, Wang H, Zhao W

(2014) Rationalism with a dose of empiricism: case-based rea-

soning for requirements-driven self-adaptation. In: Proceedings

of RE’14. Karlskrona (SE). IEEE, pp 113–122

52. Qureshi NA, Jureta I, Perini A (2012) Towards a requirements

modeling language for self-adaptive systems. In: Regnell B,

Damian DE (eds) REFSQ. LNCS, vol 7195. Springer,

pp 263–279

53. Qureshi N, Perini A (2010) Continuous adaptive requirements

engineering: an architecture for self-adaptive service-based

applications. In: RE@RunTime workshop at RE’10. Australia,

Sydney, pp 17–24

54. Rao AS, Georgeff MP (1995) Bdi agents: from theory to practice.

In: ICMAS, pp 312–319

55. Ricca F, di Penta M, Torchiano M, Tonella P, Ceccato M (2010)

How developers’ experience and ability influence web applica-

tion comprehension tasks supported by uml stereotypes: a series

of four experiments. IEEE Trans Softw Eng 36(1):96–118

56. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape

and research challenges. ACM Trans Auton Adapt Syst (TAAS)

4(2):14–42

57. Sawyer P, Bencomo N, Whittle J, Letier E, Finkelstein A (2010)

Requirements-aware systems: a research agenda for RE for self-

adaptive systems. In: IEEE International conference on requir

Engeneering (RE10), pp 95–103

58. Sousa KS, Vanderdonckt J, Henderson-Sellers B, Gonzalez-

Perez C (2012) Evaluating a graphical notation for modelling

software development methodologies. J Vis Lang Comput

23(4):195–212

59. Souza VES, Lapouchnian A, Robinson WN, Mylopoulos J (2013)

Awareness requirements. In: de Lemos R, Giese H, Mueller HA,

Shaw M (eds) Software engineering for self-adaptive systems II.

LNCS, vol 7475. Springer, pp 133–161

60. Susi A, Perini A, Giorgini P, Mylopoulos J (2005) The tropos

metamodel and its use. Informatica (Slovenia) 29(4):401–408

61. Tomkins CC (2006) An introduction to non-parametric statistics

for health scientists. Univ Alta Health Sci J 3(1):20–26

62. van Lamsweerde A (2001) Goal-oriented requirements engi-

neering: a guided tour. In: RE, p 249

63. van Lamsweerde A, Letier E (2000) Handling obstacles in goal-

oriented requirements engineering. IEEE Trans Softw Eng

26(10):978–1005

64. van Riemsdijk B, Dastani M, Winikoff M (2008) Goals in agent

systems: a unifying framework. In: Proceedings of the 7th

international conference on autonomous agents and multiagent

systems (AAMAS’08), pp 713–720

65. Wampold B, Drew C (1990) Theory and application of statistics.

McGraw-Hill, New York

66. Weyns D, Omicini A, Odell J (2007) Environment as a first class

abstraction in multiagent systems. Auton Agents Multi-Agent

Syst 14(1):5–30

67. Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel J (2010)

RELAX: a language to address uncertainty in self-adaptive sys-

tems requirement. Requir Eng 15(2):177–196

68. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén

A (2000) Experimentation in software engineering: an introduc-

tion. Kluwer, Norwell

69. Yang Z, Li Z, Jin Z, Chen Y (2014) A systematic literature

review of requirements modeling and analysis for self-adaptive

systems. In: Requirements Engineering: Foundation for Software

Quality REFSQ 2014. Essen, pp 55–71

70. Yu E (1995) Modelling strategic relationships for process

reengineering. PhD thesis, University of Toronto, Department of

Computer Science

71. Yu E (2009) Social modeling and i*. In: Borgida AT, Chaudhri

V, Giorgini P, Yu E (eds) Conceptual modeling: foundations and

applications. Lecture notes in computer science, vol 5600.

Springer, Berlin, pp 99–121

72. Zhu Q, Lin L, Kienle HM, Müller HA (2008) Characterizing

maintainability concerns in autonomic element design. In: ICSM,

pp 197–206

Requirements Eng (2017) 22:77–103 103

123

http://dx.doi.org/10.1504/IJAOSE.2010.029810
http://dx.doi.org/10.1504/IJAOSE.2010.029810

www.manaraa.com

Requirements Engineering is a copyright of Springer, 2017. All Rights Reserved.

	Engineering requirements for adaptive systems
	Abstract
	Introduction
	The Tropos4AS language
	Concepts and models
	Extended goal model
	Goal types
	Goal relationships
	Softgoals

	The environment model
	Intentional actor relationships
	Non-intentional entity relationships
	Goal conditions on environmental states

	The failure model
	Failure modelling

	Visual notation

	Goal model semantics
	Tool support and illustrative case study
	Tool support and prototype generation
	Prototyping for requirements validation and refinement: the iCleaner case study
	The iCleaner case study
	Modelling and mapping to Jadex agents with Tropos4AS
	Test case generation and simulation
	Requirements validation and refinement

	Empirical evaluation of Tropos4AS modelling
	First experiment
	Experiment procedure and variables
	Data analysis and statistical evaluation
	Results and interpretation
	Findings about RQ1: effort
	Findings about RQ2: effectiveness
	Additional results

	Summary of results for the second experiment
	Overall findings of the Empirical Study
	Threats to validity

	Related work
	Conclusion
	References

